基于机器学习的生存分析预测胃癌辅助化疗预后的发展和验证:一项多中心、纵向、队列研究。

IF 7 2区 医学 Q1 ONCOLOGY
Yan Pan, Linbin Lu, Xianchun Gao, Jun Yu, Sitian Dai, Ruirong Yao, Ning Han, Xinlin Wang, Abudurousuli Reyila, Shibo Wang, Junya Yan, Zhen Xu, Yuanyuan Lu, Mengbin Li, Jipeng Li, Jiayun Liu, Qingchuan Zhao, Kaichun Wu, Yongzhan Nie
{"title":"基于机器学习的生存分析预测胃癌辅助化疗预后的发展和验证:一项多中心、纵向、队列研究。","authors":"Yan Pan, Linbin Lu, Xianchun Gao, Jun Yu, Sitian Dai, Ruirong Yao, Ning Han, Xinlin Wang, Abudurousuli Reyila, Shibo Wang, Junya Yan, Zhen Xu, Yuanyuan Lu, Mengbin Li, Jipeng Li, Jiayun Liu, Qingchuan Zhao, Kaichun Wu, Yongzhan Nie","doi":"10.21147/j.issn.1000-9604.2025.03.07","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The previously integrated tumor-inflammation-nutrition (HI-GC) score has demonstrated dynamic monitoring value for recurrence and clinical decision-making in patients with postsurgical gastric cancer (GC). However, its failure to incorporate clinical-pathological factors limits its capacity for baseline risk assessment. This study aimed to develop a model that accurately identifies patients for adjuvant chemotherapy and dynamically evaluates recurrence risk.</p><p><strong>Methods: </strong>This retrospective, multicenter, longitudinal cohort study, spanning nine hospitals, included 7,085 patients with GC post-radical gastrectomy. A baseline prognostic model was constructed using 117 machine-learning algorithms. The dynamic survival decision tree model (dySDT) was employed to combine the baseline model with the HI-GC score.</p><p><strong>Results: </strong>A Cox regression model incorporating six factors was used to create a nomogram [Harrell's C-index: training cohort: 0.765; 95% confidence interval (95% CI): 0.747, 0.783; validation set: 0.810; 95% CI: 0.747, 0.783], including pT stage, positive lymph node ratio, pN stage, tumor size, age, and adjuvant chemotherapy. The best-performing machine learning model exhibited similar predictive accuracy to the nomogram (C-index: 0.770). For the short-term dySDT at 1 month, the mortality hazard ratios (HRs) for groups IIa, IIb, and III were 2.61 (95% CI: 2.24, 3.04), 5.02 (95% CI: 4.15, 6.06), and 8.88 (95% CI: 7.57, 10.42), respectively, compared to group I. Stratified analysis revealed a significant interaction between adjuvant chemotherapy and overall survival in each subgroup (P<0.001). The long-term dySDT at 1 year showed HRs of 3.25 (95% CI: 2.12, 4.97) for group II, 6.73 (95% CI: 4.29, 10.56) for group IIIa, and 17.88 (95% CI: 10.71, 29.84) for group IIIb.</p><p><strong>Conclusions: </strong>The dySDT effectively stratifies mortality risk and provides valuable assistance in clinical decision-making after gastrectomy.</p>","PeriodicalId":9882,"journal":{"name":"Chinese Journal of Cancer Research","volume":"37 3","pages":"377-389"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240237/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and validation of machine learning-based survival analysis to predict outcome in gastric cancer with adjuvant chemotherapy: A multicenter, longitudinal, cohort study.\",\"authors\":\"Yan Pan, Linbin Lu, Xianchun Gao, Jun Yu, Sitian Dai, Ruirong Yao, Ning Han, Xinlin Wang, Abudurousuli Reyila, Shibo Wang, Junya Yan, Zhen Xu, Yuanyuan Lu, Mengbin Li, Jipeng Li, Jiayun Liu, Qingchuan Zhao, Kaichun Wu, Yongzhan Nie\",\"doi\":\"10.21147/j.issn.1000-9604.2025.03.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The previously integrated tumor-inflammation-nutrition (HI-GC) score has demonstrated dynamic monitoring value for recurrence and clinical decision-making in patients with postsurgical gastric cancer (GC). However, its failure to incorporate clinical-pathological factors limits its capacity for baseline risk assessment. This study aimed to develop a model that accurately identifies patients for adjuvant chemotherapy and dynamically evaluates recurrence risk.</p><p><strong>Methods: </strong>This retrospective, multicenter, longitudinal cohort study, spanning nine hospitals, included 7,085 patients with GC post-radical gastrectomy. A baseline prognostic model was constructed using 117 machine-learning algorithms. The dynamic survival decision tree model (dySDT) was employed to combine the baseline model with the HI-GC score.</p><p><strong>Results: </strong>A Cox regression model incorporating six factors was used to create a nomogram [Harrell's C-index: training cohort: 0.765; 95% confidence interval (95% CI): 0.747, 0.783; validation set: 0.810; 95% CI: 0.747, 0.783], including pT stage, positive lymph node ratio, pN stage, tumor size, age, and adjuvant chemotherapy. The best-performing machine learning model exhibited similar predictive accuracy to the nomogram (C-index: 0.770). For the short-term dySDT at 1 month, the mortality hazard ratios (HRs) for groups IIa, IIb, and III were 2.61 (95% CI: 2.24, 3.04), 5.02 (95% CI: 4.15, 6.06), and 8.88 (95% CI: 7.57, 10.42), respectively, compared to group I. Stratified analysis revealed a significant interaction between adjuvant chemotherapy and overall survival in each subgroup (P<0.001). The long-term dySDT at 1 year showed HRs of 3.25 (95% CI: 2.12, 4.97) for group II, 6.73 (95% CI: 4.29, 10.56) for group IIIa, and 17.88 (95% CI: 10.71, 29.84) for group IIIb.</p><p><strong>Conclusions: </strong>The dySDT effectively stratifies mortality risk and provides valuable assistance in clinical decision-making after gastrectomy.</p>\",\"PeriodicalId\":9882,\"journal\":{\"name\":\"Chinese Journal of Cancer Research\",\"volume\":\"37 3\",\"pages\":\"377-389\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21147/j.issn.1000-9604.2025.03.07\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21147/j.issn.1000-9604.2025.03.07","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:先前的肿瘤-炎症-营养(HI-GC)综合评分对胃癌术后患者的复发和临床决策具有动态监测价值。然而,其未能纳入临床病理因素限制了其基线风险评估的能力。本研究旨在建立一个准确识别辅助化疗患者并动态评估复发风险的模型。方法:这项回顾性、多中心、纵向队列研究,涵盖9家医院,包括7,085例胃癌根治后患者。使用117种机器学习算法构建基线预后模型。采用动态生存决策树模型(dySDT)将基线模型与HI-GC评分相结合。结果:采用包含6个因素的Cox回归模型建立nomogram [Harrell’s C-index: training cohort: 0.765;95%置信区间(95% CI): 0.747, 0.783;验证集:0.810;95% CI: 0.747, 0.783],包括pT分期、淋巴结阳性率、pN分期、肿瘤大小、年龄、辅助化疗等。表现最好的机器学习模型表现出与nomogram相似的预测精度(C-index: 0.770)。对于1个月的短期dySDT,与i组相比,IIa, IIb和III组的死亡率风险比分别为2.61 (95% CI: 2.24, 3.04), 5.02 (95% CI: 4.15, 6.06)和8.88 (95% CI: 7.57, 10.42)。分层分析显示,辅助化疗与每个亚组的总生存率之间存在显著的相互作用(结论:dySDT有效地分层了死亡风险,并为胃切除术后的临床决策提供了有价值的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and validation of machine learning-based survival analysis to predict outcome in gastric cancer with adjuvant chemotherapy: A multicenter, longitudinal, cohort study.

Objective: The previously integrated tumor-inflammation-nutrition (HI-GC) score has demonstrated dynamic monitoring value for recurrence and clinical decision-making in patients with postsurgical gastric cancer (GC). However, its failure to incorporate clinical-pathological factors limits its capacity for baseline risk assessment. This study aimed to develop a model that accurately identifies patients for adjuvant chemotherapy and dynamically evaluates recurrence risk.

Methods: This retrospective, multicenter, longitudinal cohort study, spanning nine hospitals, included 7,085 patients with GC post-radical gastrectomy. A baseline prognostic model was constructed using 117 machine-learning algorithms. The dynamic survival decision tree model (dySDT) was employed to combine the baseline model with the HI-GC score.

Results: A Cox regression model incorporating six factors was used to create a nomogram [Harrell's C-index: training cohort: 0.765; 95% confidence interval (95% CI): 0.747, 0.783; validation set: 0.810; 95% CI: 0.747, 0.783], including pT stage, positive lymph node ratio, pN stage, tumor size, age, and adjuvant chemotherapy. The best-performing machine learning model exhibited similar predictive accuracy to the nomogram (C-index: 0.770). For the short-term dySDT at 1 month, the mortality hazard ratios (HRs) for groups IIa, IIb, and III were 2.61 (95% CI: 2.24, 3.04), 5.02 (95% CI: 4.15, 6.06), and 8.88 (95% CI: 7.57, 10.42), respectively, compared to group I. Stratified analysis revealed a significant interaction between adjuvant chemotherapy and overall survival in each subgroup (P<0.001). The long-term dySDT at 1 year showed HRs of 3.25 (95% CI: 2.12, 4.97) for group II, 6.73 (95% CI: 4.29, 10.56) for group IIIa, and 17.88 (95% CI: 10.71, 29.84) for group IIIb.

Conclusions: The dySDT effectively stratifies mortality risk and provides valuable assistance in clinical decision-making after gastrectomy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
9.80%
发文量
1726
审稿时长
4.5 months
期刊介绍: Chinese Journal of Cancer Research (CJCR; Print ISSN: 1000-9604; Online ISSN:1993-0631) is published by AME Publishing Company in association with Chinese Anti-Cancer Association.It was launched in March 1995 as a quarterly publication and is now published bi-monthly since February 2013. CJCR is published bi-monthly in English, and is an international journal devoted to the life sciences and medical sciences. It publishes peer-reviewed original articles of basic investigations and clinical observations, reviews and brief communications providing a forum for the recent experimental and clinical advances in cancer research. This journal is indexed in Science Citation Index Expanded (SCIE), PubMed/PubMed Central (PMC), Scopus, SciSearch, Chemistry Abstracts (CA), the Excerpta Medica/EMBASE, Chinainfo, CNKI, CSCI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信