Hyeon Mi Sung, Seok Hyun Kim, Eun Jung Kwon, Sang Hwa Jeong, Hyun Min Lee, Yun Hak Kim, Chang Kyu Oh
{"title":"单细胞转录组学分析揭示了斑马鱼胚胎模型中毛细胞对聚苯乙烯纳米塑料的特异性分子反应。","authors":"Hyeon Mi Sung, Seok Hyun Kim, Eun Jung Kwon, Sang Hwa Jeong, Hyun Min Lee, Yun Hak Kim, Chang Kyu Oh","doi":"10.1002/bab.70028","DOIUrl":null,"url":null,"abstract":"<p><p>Polystyrene nanoplastics (PSNPs) have emerged as pervasive environmental pollutants with potential toxicological effects on aquatic ecosystems. Their small size, hydrophobicity, and structural stability enable penetration into biological tissues, inducing diverse toxic responses. This study investigates the physiological and molecular impacts of PSNPs on zebrafish embryos using single-cell RNA sequencing and phenotypic analyses. While PS-NP exposure at environmentally relevant concentrations caused no significant changes in survival or overt phenotypes, it led to alterations in cell type proportions and gene expression. Differentially expressed gene (DEG) analysis revealed the upregulation of genes such as col1a1a, fgfbp2b, cytl1, and fstl1a, which were validated in vivo. These genes are associated with extracellular matrix remodeling, immune regulation, and tissue repair, suggesting that PSNPs activate defensive and reparative mechanisms in response to environmental stress. These findings highlight the molecular and cellular responses to PSNP exposure in zebrafish embryos and underscore the importance of evaluating the ecological risks posed by nanoplastics.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Cell Transcriptomic Analysis Reveals Hair Cell-Specific Molecular Responses to Polystyrene Nanoplastics in a Zebrafish Embryo Model.\",\"authors\":\"Hyeon Mi Sung, Seok Hyun Kim, Eun Jung Kwon, Sang Hwa Jeong, Hyun Min Lee, Yun Hak Kim, Chang Kyu Oh\",\"doi\":\"10.1002/bab.70028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polystyrene nanoplastics (PSNPs) have emerged as pervasive environmental pollutants with potential toxicological effects on aquatic ecosystems. Their small size, hydrophobicity, and structural stability enable penetration into biological tissues, inducing diverse toxic responses. This study investigates the physiological and molecular impacts of PSNPs on zebrafish embryos using single-cell RNA sequencing and phenotypic analyses. While PS-NP exposure at environmentally relevant concentrations caused no significant changes in survival or overt phenotypes, it led to alterations in cell type proportions and gene expression. Differentially expressed gene (DEG) analysis revealed the upregulation of genes such as col1a1a, fgfbp2b, cytl1, and fstl1a, which were validated in vivo. These genes are associated with extracellular matrix remodeling, immune regulation, and tissue repair, suggesting that PSNPs activate defensive and reparative mechanisms in response to environmental stress. These findings highlight the molecular and cellular responses to PSNP exposure in zebrafish embryos and underscore the importance of evaluating the ecological risks posed by nanoplastics.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.70028\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.70028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single-Cell Transcriptomic Analysis Reveals Hair Cell-Specific Molecular Responses to Polystyrene Nanoplastics in a Zebrafish Embryo Model.
Polystyrene nanoplastics (PSNPs) have emerged as pervasive environmental pollutants with potential toxicological effects on aquatic ecosystems. Their small size, hydrophobicity, and structural stability enable penetration into biological tissues, inducing diverse toxic responses. This study investigates the physiological and molecular impacts of PSNPs on zebrafish embryos using single-cell RNA sequencing and phenotypic analyses. While PS-NP exposure at environmentally relevant concentrations caused no significant changes in survival or overt phenotypes, it led to alterations in cell type proportions and gene expression. Differentially expressed gene (DEG) analysis revealed the upregulation of genes such as col1a1a, fgfbp2b, cytl1, and fstl1a, which were validated in vivo. These genes are associated with extracellular matrix remodeling, immune regulation, and tissue repair, suggesting that PSNPs activate defensive and reparative mechanisms in response to environmental stress. These findings highlight the molecular and cellular responses to PSNP exposure in zebrafish embryos and underscore the importance of evaluating the ecological risks posed by nanoplastics.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.