Vitor de Toledo Stuani, Isabela Sanches Pompeo da Silva, Gustavo Gonçalves do Prado Manfredi, Fernanda Balestrero Cassiano, Larissa Alamo, Ligia Espoliar Corrêa, Jamil Awad Shibli, Carlos Alberto de Souza Costa, Diana Gabriela Soares
{"title":"人牙龈成纤维细胞增强三维打印钛表面胶原生成的体外研究。","authors":"Vitor de Toledo Stuani, Isabela Sanches Pompeo da Silva, Gustavo Gonçalves do Prado Manfredi, Fernanda Balestrero Cassiano, Larissa Alamo, Ligia Espoliar Corrêa, Jamil Awad Shibli, Carlos Alberto de Souza Costa, Diana Gabriela Soares","doi":"10.1116/6.0004500","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of cementum in peri-implant tissues leads to a deficiency in anchorage points for gingival collagen fibers. This arrangement is linked to reduced protective capabilities compared to teeth. Therefore, there is a pressing need to develop surfaces that optimize the interaction between soft tissue and implants. 3D-printed titanium disks (Ti3DP), machined disks (TiMC), and glass coverslips (GS) were seeded with human gingival fibroblasts. These specimens underwent mechanical characterization via roughness and wettability assays. Biological characterization included assessments of cellular viability (live/dead), adhesion and spreading (F-actin), cell count (DAPI), cellular metabolism (Alamar blue), adhesive strength, and soluble collagen and total protein quantification up to 14 days. Data analysis employed Student's t-test and ANOVA post-hoc Tukey test (α = 0.05). The group TiMC exhibited higher hydrophilicity and lower roughness compared to Ti3DP. All groups demonstrated cellular viability throughout the study period. Adhesive strength did not significantly differ among groups; however, cell count was higher in TiMC and GS after one day of cell seeding in comparison to Ti3DP. Morphologically, GS and TiMC displayed more fusiform cells with a uniform distribution, while Ti3DP showed smaller, irregular cells with multiple lamellipodia and filopodia. Additionally, statistically superior collagen and total protein deposition was observed in Ti3DP (p < 0.01). The 3D-printed titanium surface allowed human gingival fibroblasts to adhere to it, leading to a 3D cytoskeleton morphology that culminated in increased collagen expression. Therefore, these 3D-printed devices present a promising avenue for producing transmucosal components due to their increase in collagen production.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced collagenogenesis on three-dimensionally printed titanium surfaces by human gingival fibroblasts: An in vitro study.\",\"authors\":\"Vitor de Toledo Stuani, Isabela Sanches Pompeo da Silva, Gustavo Gonçalves do Prado Manfredi, Fernanda Balestrero Cassiano, Larissa Alamo, Ligia Espoliar Corrêa, Jamil Awad Shibli, Carlos Alberto de Souza Costa, Diana Gabriela Soares\",\"doi\":\"10.1116/6.0004500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lack of cementum in peri-implant tissues leads to a deficiency in anchorage points for gingival collagen fibers. This arrangement is linked to reduced protective capabilities compared to teeth. Therefore, there is a pressing need to develop surfaces that optimize the interaction between soft tissue and implants. 3D-printed titanium disks (Ti3DP), machined disks (TiMC), and glass coverslips (GS) were seeded with human gingival fibroblasts. These specimens underwent mechanical characterization via roughness and wettability assays. Biological characterization included assessments of cellular viability (live/dead), adhesion and spreading (F-actin), cell count (DAPI), cellular metabolism (Alamar blue), adhesive strength, and soluble collagen and total protein quantification up to 14 days. Data analysis employed Student's t-test and ANOVA post-hoc Tukey test (α = 0.05). The group TiMC exhibited higher hydrophilicity and lower roughness compared to Ti3DP. All groups demonstrated cellular viability throughout the study period. Adhesive strength did not significantly differ among groups; however, cell count was higher in TiMC and GS after one day of cell seeding in comparison to Ti3DP. Morphologically, GS and TiMC displayed more fusiform cells with a uniform distribution, while Ti3DP showed smaller, irregular cells with multiple lamellipodia and filopodia. Additionally, statistically superior collagen and total protein deposition was observed in Ti3DP (p < 0.01). The 3D-printed titanium surface allowed human gingival fibroblasts to adhere to it, leading to a 3D cytoskeleton morphology that culminated in increased collagen expression. Therefore, these 3D-printed devices present a promising avenue for producing transmucosal components due to their increase in collagen production.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004500\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004500","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Enhanced collagenogenesis on three-dimensionally printed titanium surfaces by human gingival fibroblasts: An in vitro study.
The lack of cementum in peri-implant tissues leads to a deficiency in anchorage points for gingival collagen fibers. This arrangement is linked to reduced protective capabilities compared to teeth. Therefore, there is a pressing need to develop surfaces that optimize the interaction between soft tissue and implants. 3D-printed titanium disks (Ti3DP), machined disks (TiMC), and glass coverslips (GS) were seeded with human gingival fibroblasts. These specimens underwent mechanical characterization via roughness and wettability assays. Biological characterization included assessments of cellular viability (live/dead), adhesion and spreading (F-actin), cell count (DAPI), cellular metabolism (Alamar blue), adhesive strength, and soluble collagen and total protein quantification up to 14 days. Data analysis employed Student's t-test and ANOVA post-hoc Tukey test (α = 0.05). The group TiMC exhibited higher hydrophilicity and lower roughness compared to Ti3DP. All groups demonstrated cellular viability throughout the study period. Adhesive strength did not significantly differ among groups; however, cell count was higher in TiMC and GS after one day of cell seeding in comparison to Ti3DP. Morphologically, GS and TiMC displayed more fusiform cells with a uniform distribution, while Ti3DP showed smaller, irregular cells with multiple lamellipodia and filopodia. Additionally, statistically superior collagen and total protein deposition was observed in Ti3DP (p < 0.01). The 3D-printed titanium surface allowed human gingival fibroblasts to adhere to it, leading to a 3D cytoskeleton morphology that culminated in increased collagen expression. Therefore, these 3D-printed devices present a promising avenue for producing transmucosal components due to their increase in collagen production.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.