流体温度和流量的全波形声波层析成像。

IF 2.5 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Lennart Kira, Jerome Noir
{"title":"流体温度和流量的全波形声波层析成像。","authors":"Lennart Kira,&nbsp;Jerome Noir","doi":"10.1007/s00348-025-04068-z","DOIUrl":null,"url":null,"abstract":"<p>Using the travel time of sound waves advected by a moving carrier medium, acoustic tomography allows to reconstruct temperature and flow fields in opaque fluids without tracers or scattering particles. Reconstruction algorithms are conventionally based on the ray approximation and pose difficulties, especially in enclosed domains: Interferences of early reflections can prevent the assignment of each arrival to the correct ray path. We develop a full-waveform inversion for acoustic tomography in laboratory-scale experiments, perform synthetic tests, and benchmark these with a straight-ray algorithm. Multiple late arrivals of reflected waves are considered in order to increase the quality of the reconstructions when restricted to a sparse transducer array. In addition, the full-waveform algorithm allows to invert simultaneously emitted signals from all sources, decreasing the acquisition time in which a flow must be assumed stationary. These findings make the new method especially interesting for researchers experimenting with enclosed, opaque fluids where no optical imaging is feasible. Furthermore, we envision a potential application of the newly developed method to map flows around objects or complex wall geometries and even multiphase flows.</p>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238201/pdf/","citationCount":"0","resultStr":"{\"title\":\"Full-waveform acoustic tomography for fluid temperature and flow\",\"authors\":\"Lennart Kira,&nbsp;Jerome Noir\",\"doi\":\"10.1007/s00348-025-04068-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using the travel time of sound waves advected by a moving carrier medium, acoustic tomography allows to reconstruct temperature and flow fields in opaque fluids without tracers or scattering particles. Reconstruction algorithms are conventionally based on the ray approximation and pose difficulties, especially in enclosed domains: Interferences of early reflections can prevent the assignment of each arrival to the correct ray path. We develop a full-waveform inversion for acoustic tomography in laboratory-scale experiments, perform synthetic tests, and benchmark these with a straight-ray algorithm. Multiple late arrivals of reflected waves are considered in order to increase the quality of the reconstructions when restricted to a sparse transducer array. In addition, the full-waveform algorithm allows to invert simultaneously emitted signals from all sources, decreasing the acquisition time in which a flow must be assumed stationary. These findings make the new method especially interesting for researchers experimenting with enclosed, opaque fluids where no optical imaging is feasible. Furthermore, we envision a potential application of the newly developed method to map flows around objects or complex wall geometries and even multiphase flows.</p>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238201/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-025-04068-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-04068-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用声波在运动载体介质中平流的传播时间,声波层析成像可以在没有示踪剂或散射粒子的情况下重建不透明流体中的温度场和流场。重建算法通常是基于射线近似的,这带来了困难,特别是在封闭域:早期反射的干扰会阻止每个到达的正确射线路径的分配。我们在实验室规模的实验中开发了声学层析成像的全波形反演,进行了合成测试,并用直线算法对这些测试进行了基准测试。在稀疏换能器阵列条件下,为了提高重构质量,考虑了反射波的多次延迟到达。此外,全波形算法允许对所有源同时发射的信号进行反演,从而减少了必须假定流平稳的采集时间。这些发现使得新方法对研究人员在封闭的、不透明的流体中进行实验特别感兴趣,因为这些流体无法进行光学成像。此外,我们设想了新开发的方法在绘制物体或复杂壁面几何形状甚至多相流周围流动的潜在应用。图片摘要:补充信息:在线版本包含补充资料,可在10.1007/s00348-025-04068-z获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full-waveform acoustic tomography for fluid temperature and flow

Using the travel time of sound waves advected by a moving carrier medium, acoustic tomography allows to reconstruct temperature and flow fields in opaque fluids without tracers or scattering particles. Reconstruction algorithms are conventionally based on the ray approximation and pose difficulties, especially in enclosed domains: Interferences of early reflections can prevent the assignment of each arrival to the correct ray path. We develop a full-waveform inversion for acoustic tomography in laboratory-scale experiments, perform synthetic tests, and benchmark these with a straight-ray algorithm. Multiple late arrivals of reflected waves are considered in order to increase the quality of the reconstructions when restricted to a sparse transducer array. In addition, the full-waveform algorithm allows to invert simultaneously emitted signals from all sources, decreasing the acquisition time in which a flow must be assumed stationary. These findings make the new method especially interesting for researchers experimenting with enclosed, opaque fluids where no optical imaging is feasible. Furthermore, we envision a potential application of the newly developed method to map flows around objects or complex wall geometries and even multiphase flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信