BInD:基于多目标结构的药物设计的键和相互作用生成扩散模型。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Joongwon Lee, Wonho Zhung, Jisu Seo, Woo Youn Kim
{"title":"BInD:基于多目标结构的药物设计的键和相互作用生成扩散模型。","authors":"Joongwon Lee, Wonho Zhung, Jisu Seo, Woo Youn Kim","doi":"10.1002/advs.202502702","DOIUrl":null,"url":null,"abstract":"<p><p>Recent remarkable advancements in geometric deep generative models, coupled with accumulated structural data, enable structure-based drug design (SBDD) using only target protein information. However, existing models often struggle to balance multiple objectives, excelling only in specific tasks. BInD, a diffusion model with knowledge-based guidance, is introduced to address this limitation by co-generating molecules and their interactions with a target protein. This approach ensures balanced consideration of key objectives, including target-specific interactions, molecular properties, and local geometry. Comprehensive evaluations demonstrate that BInD achieves robust performance across all objectives, matching or surpassing state-of-the-art methods. Additionally, an NCI-driven molecule design and optimization method is proposed, enabling the enhancement of target binding and specificity by elaborating the adequate interaction patterns.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e02702"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BInD: Bond and Interaction-Generating Diffusion Model for Multi-Objective Structure-Based Drug Design.\",\"authors\":\"Joongwon Lee, Wonho Zhung, Jisu Seo, Woo Youn Kim\",\"doi\":\"10.1002/advs.202502702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent remarkable advancements in geometric deep generative models, coupled with accumulated structural data, enable structure-based drug design (SBDD) using only target protein information. However, existing models often struggle to balance multiple objectives, excelling only in specific tasks. BInD, a diffusion model with knowledge-based guidance, is introduced to address this limitation by co-generating molecules and their interactions with a target protein. This approach ensures balanced consideration of key objectives, including target-specific interactions, molecular properties, and local geometry. Comprehensive evaluations demonstrate that BInD achieves robust performance across all objectives, matching or surpassing state-of-the-art methods. Additionally, an NCI-driven molecule design and optimization method is proposed, enabling the enhancement of target binding and specificity by elaborating the adequate interaction patterns.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e02702\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202502702\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202502702","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近几何深度生成模型的显著进步,加上积累的结构数据,使得仅使用靶蛋白信息的基于结构的药物设计(SBDD)成为可能。然而,现有的模型往往难以平衡多个目标,只擅长于特定的任务。BInD是一种基于知识指导的扩散模型,通过共同生成分子及其与靶蛋白的相互作用来解决这一限制。这种方法确保平衡考虑关键目标,包括目标特异性相互作用,分子性质和局部几何形状。综合评估表明,BInD在所有目标上都实现了稳健的性能,达到或超过了最先进的方法。此外,提出了一种nci驱动的分子设计和优化方法,通过阐述适当的相互作用模式来增强靶标结合和特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BInD: Bond and Interaction-Generating Diffusion Model for Multi-Objective Structure-Based Drug Design.

Recent remarkable advancements in geometric deep generative models, coupled with accumulated structural data, enable structure-based drug design (SBDD) using only target protein information. However, existing models often struggle to balance multiple objectives, excelling only in specific tasks. BInD, a diffusion model with knowledge-based guidance, is introduced to address this limitation by co-generating molecules and their interactions with a target protein. This approach ensures balanced consideration of key objectives, including target-specific interactions, molecular properties, and local geometry. Comprehensive evaluations demonstrate that BInD achieves robust performance across all objectives, matching or surpassing state-of-the-art methods. Additionally, an NCI-driven molecule design and optimization method is proposed, enabling the enhancement of target binding and specificity by elaborating the adequate interaction patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信