磁性纳米培养物磁泳传递的预测建模与实验验证。

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Materials Letters Pub Date : 2025-06-25 eCollection Date: 2025-07-07 DOI:10.1021/acsmaterialslett.5c00753
Rohit Chauhan, Huda Usman, Nitin Minocha, Mehdi Molaei, Tagbo H R Niepa, Meenesh R Singh
{"title":"磁性纳米培养物磁泳传递的预测建模与实验验证。","authors":"Rohit Chauhan, Huda Usman, Nitin Minocha, Mehdi Molaei, Tagbo H R Niepa, Meenesh R Singh","doi":"10.1021/acsmaterialslett.5c00753","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetophoresis offers a powerful strategy for the targeted delivery of functional microcapsules. Here, we present a combined theoretical and experimental framework to predict the magnetophoretic transport of magnetic nanocultures-microcapsules embedded with magnetic nanoparticles and living cells. We derive a novel analytical expression for the terminal velocity of microcapsules under a spatially decaying magnetic field. The model incorporates magnetic and hydrodynamic forces in low Reynolds number regimes and predicts microcapsule velocity variations with nanoparticle size and field strength. Experimental validation using nanocultures containing nanoparticles 5, 10, and 20 nm in size confirms the model's accuracy, with 10-nm particles showing optimal magnetophoretic response. The model also accounts for hindered motion at high microcapsule densities. This work provides a predictive tool for designing magnetically guided systems for microbial delivery, localization, and patterning, with applications in bioreactors, therapy, and engineered living materials.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 7","pages":"2679-2685"},"PeriodicalIF":8.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239069/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predictive Modeling and Experimental Validation of Magnetophoretic Delivery of Magnetic Nanocultures.\",\"authors\":\"Rohit Chauhan, Huda Usman, Nitin Minocha, Mehdi Molaei, Tagbo H R Niepa, Meenesh R Singh\",\"doi\":\"10.1021/acsmaterialslett.5c00753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetophoresis offers a powerful strategy for the targeted delivery of functional microcapsules. Here, we present a combined theoretical and experimental framework to predict the magnetophoretic transport of magnetic nanocultures-microcapsules embedded with magnetic nanoparticles and living cells. We derive a novel analytical expression for the terminal velocity of microcapsules under a spatially decaying magnetic field. The model incorporates magnetic and hydrodynamic forces in low Reynolds number regimes and predicts microcapsule velocity variations with nanoparticle size and field strength. Experimental validation using nanocultures containing nanoparticles 5, 10, and 20 nm in size confirms the model's accuracy, with 10-nm particles showing optimal magnetophoretic response. The model also accounts for hindered motion at high microcapsule densities. This work provides a predictive tool for designing magnetically guided systems for microbial delivery, localization, and patterning, with applications in bioreactors, therapy, and engineered living materials.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 7\",\"pages\":\"2679-2685\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239069/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialslett.5c00753\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/7 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.5c00753","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁泳术为功能性微胶囊的靶向递送提供了一种强有力的策略。在这里,我们提出了一个结合理论和实验的框架来预测磁性纳米培养-嵌入磁性纳米颗粒和活细胞的微胶囊的磁电泳运输。导出了空间衰减磁场下微胶囊终端速度的解析表达式。该模型结合了低雷诺数条件下的磁力和流体动力,并预测了微胶囊速度随纳米颗粒大小和场强的变化。使用含有5、10和20纳米纳米颗粒的纳米培养物进行实验验证,证实了模型的准确性,其中10纳米颗粒表现出最佳的磁泳反应。该模型还考虑了高微胶囊密度下的运动障碍。这项工作为设计用于微生物递送、定位和模式的磁引导系统提供了一种预测工具,可用于生物反应器、治疗和工程生物材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Modeling and Experimental Validation of Magnetophoretic Delivery of Magnetic Nanocultures.

Magnetophoresis offers a powerful strategy for the targeted delivery of functional microcapsules. Here, we present a combined theoretical and experimental framework to predict the magnetophoretic transport of magnetic nanocultures-microcapsules embedded with magnetic nanoparticles and living cells. We derive a novel analytical expression for the terminal velocity of microcapsules under a spatially decaying magnetic field. The model incorporates magnetic and hydrodynamic forces in low Reynolds number regimes and predicts microcapsule velocity variations with nanoparticle size and field strength. Experimental validation using nanocultures containing nanoparticles 5, 10, and 20 nm in size confirms the model's accuracy, with 10-nm particles showing optimal magnetophoretic response. The model also accounts for hindered motion at high microcapsule densities. This work provides a predictive tool for designing magnetically guided systems for microbial delivery, localization, and patterning, with applications in bioreactors, therapy, and engineered living materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信