Rohit Chauhan, Huda Usman, Nitin Minocha, Mehdi Molaei, Tagbo H R Niepa, Meenesh R Singh
{"title":"磁性纳米培养物磁泳传递的预测建模与实验验证。","authors":"Rohit Chauhan, Huda Usman, Nitin Minocha, Mehdi Molaei, Tagbo H R Niepa, Meenesh R Singh","doi":"10.1021/acsmaterialslett.5c00753","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetophoresis offers a powerful strategy for the targeted delivery of functional microcapsules. Here, we present a combined theoretical and experimental framework to predict the magnetophoretic transport of magnetic nanocultures-microcapsules embedded with magnetic nanoparticles and living cells. We derive a novel analytical expression for the terminal velocity of microcapsules under a spatially decaying magnetic field. The model incorporates magnetic and hydrodynamic forces in low Reynolds number regimes and predicts microcapsule velocity variations with nanoparticle size and field strength. Experimental validation using nanocultures containing nanoparticles 5, 10, and 20 nm in size confirms the model's accuracy, with 10-nm particles showing optimal magnetophoretic response. The model also accounts for hindered motion at high microcapsule densities. This work provides a predictive tool for designing magnetically guided systems for microbial delivery, localization, and patterning, with applications in bioreactors, therapy, and engineered living materials.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 7","pages":"2679-2685"},"PeriodicalIF":8.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239069/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predictive Modeling and Experimental Validation of Magnetophoretic Delivery of Magnetic Nanocultures.\",\"authors\":\"Rohit Chauhan, Huda Usman, Nitin Minocha, Mehdi Molaei, Tagbo H R Niepa, Meenesh R Singh\",\"doi\":\"10.1021/acsmaterialslett.5c00753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetophoresis offers a powerful strategy for the targeted delivery of functional microcapsules. Here, we present a combined theoretical and experimental framework to predict the magnetophoretic transport of magnetic nanocultures-microcapsules embedded with magnetic nanoparticles and living cells. We derive a novel analytical expression for the terminal velocity of microcapsules under a spatially decaying magnetic field. The model incorporates magnetic and hydrodynamic forces in low Reynolds number regimes and predicts microcapsule velocity variations with nanoparticle size and field strength. Experimental validation using nanocultures containing nanoparticles 5, 10, and 20 nm in size confirms the model's accuracy, with 10-nm particles showing optimal magnetophoretic response. The model also accounts for hindered motion at high microcapsule densities. This work provides a predictive tool for designing magnetically guided systems for microbial delivery, localization, and patterning, with applications in bioreactors, therapy, and engineered living materials.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 7\",\"pages\":\"2679-2685\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239069/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialslett.5c00753\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/7 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.5c00753","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Predictive Modeling and Experimental Validation of Magnetophoretic Delivery of Magnetic Nanocultures.
Magnetophoresis offers a powerful strategy for the targeted delivery of functional microcapsules. Here, we present a combined theoretical and experimental framework to predict the magnetophoretic transport of magnetic nanocultures-microcapsules embedded with magnetic nanoparticles and living cells. We derive a novel analytical expression for the terminal velocity of microcapsules under a spatially decaying magnetic field. The model incorporates magnetic and hydrodynamic forces in low Reynolds number regimes and predicts microcapsule velocity variations with nanoparticle size and field strength. Experimental validation using nanocultures containing nanoparticles 5, 10, and 20 nm in size confirms the model's accuracy, with 10-nm particles showing optimal magnetophoretic response. The model also accounts for hindered motion at high microcapsule densities. This work provides a predictive tool for designing magnetically guided systems for microbial delivery, localization, and patterning, with applications in bioreactors, therapy, and engineered living materials.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.