基于局部深度学习模型的非侵入性局部/全局耦合有效模拟点焊结构的冲击

IF 2.9 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Afsal Pulikkathodi, Ludovic Chamoin, Elisabeth Lacazedieu, Juan Pedro Berro Ramirez, Laurent Rota, Malek Zarroug
{"title":"基于局部深度学习模型的非侵入性局部/全局耦合有效模拟点焊结构的冲击","authors":"Afsal Pulikkathodi,&nbsp;Ludovic Chamoin,&nbsp;Elisabeth Lacazedieu,&nbsp;Juan Pedro Berro Ramirez,&nbsp;Laurent Rota,&nbsp;Malek Zarroug","doi":"10.1002/nme.70086","DOIUrl":null,"url":null,"abstract":"<p>The article tackles the challenge of effective modeling and simulation of large mechanical structures exhibiting numerous local complex behaviors, as encountered with spot welds in automotive crash numerical analysis. To address this challenge, we propose a nonintrusive local/global coupling strategy, where the local model is a neural network-based reduced model, specifically a physics-guided neural network (PGANN). This multiscale strategy enables accurate modeling of complex localized behaviors while maintaining computational efficiency, without modifying the global solver. The proposed approach is validated through a series of structural examples, including full 3D industrial structures with multiple spot welds.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 14","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70086","citationCount":"0","resultStr":"{\"title\":\"Nonintrusive Local/Global Coupling With Local Deep Learning-Based Models for the Effective Simulation of Spotwelded Structures Under Impact\",\"authors\":\"Afsal Pulikkathodi,&nbsp;Ludovic Chamoin,&nbsp;Elisabeth Lacazedieu,&nbsp;Juan Pedro Berro Ramirez,&nbsp;Laurent Rota,&nbsp;Malek Zarroug\",\"doi\":\"10.1002/nme.70086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article tackles the challenge of effective modeling and simulation of large mechanical structures exhibiting numerous local complex behaviors, as encountered with spot welds in automotive crash numerical analysis. To address this challenge, we propose a nonintrusive local/global coupling strategy, where the local model is a neural network-based reduced model, specifically a physics-guided neural network (PGANN). This multiscale strategy enables accurate modeling of complex localized behaviors while maintaining computational efficiency, without modifying the global solver. The proposed approach is validated through a series of structural examples, including full 3D industrial structures with multiple spot welds.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"126 14\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70086\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.70086\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70086","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了在汽车碰撞数值分析中遇到的点焊等具有众多局部复杂行为的大型机械结构的有效建模和仿真的挑战。为了解决这一挑战,我们提出了一种非侵入性的局部/全局耦合策略,其中局部模型是基于神经网络的简化模型,特别是物理引导神经网络(pgan)。这种多尺度策略可以在保持计算效率的同时精确地建模复杂的局部行为,而无需修改全局求解器。通过一系列结构实例验证了所提出的方法,包括具有多个点焊的全3D工业结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonintrusive Local/Global Coupling With Local Deep Learning-Based Models for the Effective Simulation of Spotwelded Structures Under Impact

Nonintrusive Local/Global Coupling With Local Deep Learning-Based Models for the Effective Simulation of Spotwelded Structures Under Impact

The article tackles the challenge of effective modeling and simulation of large mechanical structures exhibiting numerous local complex behaviors, as encountered with spot welds in automotive crash numerical analysis. To address this challenge, we propose a nonintrusive local/global coupling strategy, where the local model is a neural network-based reduced model, specifically a physics-guided neural network (PGANN). This multiscale strategy enables accurate modeling of complex localized behaviors while maintaining computational efficiency, without modifying the global solver. The proposed approach is validated through a series of structural examples, including full 3D industrial structures with multiple spot welds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信