Bruno Millet, Casimir de Lavergne, William R. Gray, Christian Éthé, Gurvan Madec, Mark Holzer, Tim DeVries, Geoffrey Gebbie, Didier M. Roche
{"title":"深海通风:一般环流模式和数据约束逆模式的比较","authors":"Bruno Millet, Casimir de Lavergne, William R. Gray, Christian Éthé, Gurvan Madec, Mark Holzer, Tim DeVries, Geoffrey Gebbie, Didier M. Roche","doi":"10.1029/2024MS004914","DOIUrl":null,"url":null,"abstract":"<p>Ocean ventilation, or the transfer of tracers from the surface boundary layer into the ocean interior, is a critical process in biogeochemical cycles and the climate system. Here, we assess steady-state ventilation patterns and timescales in three models of ocean transport: a 1<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> global configuration of the Nucleus for European Modeling of the Ocean (NEMO), a recent 2<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> solution of the Ocean Circulation Inverse Model (OCIM), and a 2<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> solution of the Total Matrix Intercomparison (TMI). We release artificial dyes in six surface regions of each model and compare equilibrium dye distributions as well as ideal age distributions. We find good qualitative agreement in large-scale dye distributions across the three models. However, the distributions indicate that TMI and OCIM are more diffusive than NEMO. A shallow bias of North Atlantic ventilation in NEMO contributes to a stronger presence of the North Atlantic dye in the mid-depth Southern Ocean and Pacific. This isopycnal communication between the North Atlantic surface and the mid-depth Pacific is very slow, however, and NEMO simulates a maximum age in the North Pacific (NP) about 900 years higher than the data-constrained models. Overly slow NP ventilation persists across NEMO sensitivity experiments encompassing our current best knowledge of diapycnal and isopycnal mixing, pointing to biases in subarctic Pacific dynamics. This study provides a synoptic picture of deep ocean ventilation and a framework for assessing its representation in general circulation models.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004914","citationCount":"0","resultStr":"{\"title\":\"Deep Ocean Ventilation: A Comparison Between a General Circulation Model and Data-Constrained Inverse Models\",\"authors\":\"Bruno Millet, Casimir de Lavergne, William R. Gray, Christian Éthé, Gurvan Madec, Mark Holzer, Tim DeVries, Geoffrey Gebbie, Didier M. Roche\",\"doi\":\"10.1029/2024MS004914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ocean ventilation, or the transfer of tracers from the surface boundary layer into the ocean interior, is a critical process in biogeochemical cycles and the climate system. Here, we assess steady-state ventilation patterns and timescales in three models of ocean transport: a 1<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math> global configuration of the Nucleus for European Modeling of the Ocean (NEMO), a recent 2<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math> solution of the Ocean Circulation Inverse Model (OCIM), and a 2<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math> solution of the Total Matrix Intercomparison (TMI). We release artificial dyes in six surface regions of each model and compare equilibrium dye distributions as well as ideal age distributions. We find good qualitative agreement in large-scale dye distributions across the three models. However, the distributions indicate that TMI and OCIM are more diffusive than NEMO. A shallow bias of North Atlantic ventilation in NEMO contributes to a stronger presence of the North Atlantic dye in the mid-depth Southern Ocean and Pacific. This isopycnal communication between the North Atlantic surface and the mid-depth Pacific is very slow, however, and NEMO simulates a maximum age in the North Pacific (NP) about 900 years higher than the data-constrained models. Overly slow NP ventilation persists across NEMO sensitivity experiments encompassing our current best knowledge of diapycnal and isopycnal mixing, pointing to biases in subarctic Pacific dynamics. This study provides a synoptic picture of deep ocean ventilation and a framework for assessing its representation in general circulation models.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004914\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024MS004914\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024MS004914","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Deep Ocean Ventilation: A Comparison Between a General Circulation Model and Data-Constrained Inverse Models
Ocean ventilation, or the transfer of tracers from the surface boundary layer into the ocean interior, is a critical process in biogeochemical cycles and the climate system. Here, we assess steady-state ventilation patterns and timescales in three models of ocean transport: a 1 global configuration of the Nucleus for European Modeling of the Ocean (NEMO), a recent 2 solution of the Ocean Circulation Inverse Model (OCIM), and a 2 solution of the Total Matrix Intercomparison (TMI). We release artificial dyes in six surface regions of each model and compare equilibrium dye distributions as well as ideal age distributions. We find good qualitative agreement in large-scale dye distributions across the three models. However, the distributions indicate that TMI and OCIM are more diffusive than NEMO. A shallow bias of North Atlantic ventilation in NEMO contributes to a stronger presence of the North Atlantic dye in the mid-depth Southern Ocean and Pacific. This isopycnal communication between the North Atlantic surface and the mid-depth Pacific is very slow, however, and NEMO simulates a maximum age in the North Pacific (NP) about 900 years higher than the data-constrained models. Overly slow NP ventilation persists across NEMO sensitivity experiments encompassing our current best knowledge of diapycnal and isopycnal mixing, pointing to biases in subarctic Pacific dynamics. This study provides a synoptic picture of deep ocean ventilation and a framework for assessing its representation in general circulation models.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.