冗余双臂最小时间问题的双层优化方法

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Jonathan Fried;Santiago Paternain
{"title":"冗余双臂最小时间问题的双层优化方法","authors":"Jonathan Fried;Santiago Paternain","doi":"10.1109/LCSYS.2025.3583741","DOIUrl":null,"url":null,"abstract":"In this letter, we present a method for minimizing the time required for a redundant dual-arm robot to follow a desired relative Cartesian path at constant path speed by optimizing its joint trajectories, subject to position, velocity, and acceleration limits. The problem is reformulated as a bi-level optimization whose lower level is a convex, closed-form subproblem that maximizes path speed for a fixed trajectory, while the upper level updates the trajectory using a single-chain kinematic formulation and the subgradient of the lower-level value. Numerical results demonstrate the effectiveness of the proposed approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1321-1326"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bi-Level Optimization Method for Redundant Dual-Arm Minimum Time Problems\",\"authors\":\"Jonathan Fried;Santiago Paternain\",\"doi\":\"10.1109/LCSYS.2025.3583741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we present a method for minimizing the time required for a redundant dual-arm robot to follow a desired relative Cartesian path at constant path speed by optimizing its joint trajectories, subject to position, velocity, and acceleration limits. The problem is reformulated as a bi-level optimization whose lower level is a convex, closed-form subproblem that maximizes path speed for a fixed trajectory, while the upper level updates the trajectory using a single-chain kinematic formulation and the subgradient of the lower-level value. Numerical results demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"1321-1326\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11053990/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11053990/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们提出了一种方法,通过优化其关节轨迹,使冗余双臂机器人在受位置、速度和加速度限制的情况下,以恒定路径速度沿着所需的相对笛卡尔路径所需的时间最小化。该问题被重新表述为双层优化,其下层是一个凸的,封闭形式的子问题,该子问题用于最大化固定轨迹的路径速度,而上层使用单链运动学公式和下层值的子梯度来更新轨迹。数值结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bi-Level Optimization Method for Redundant Dual-Arm Minimum Time Problems
In this letter, we present a method for minimizing the time required for a redundant dual-arm robot to follow a desired relative Cartesian path at constant path speed by optimizing its joint trajectories, subject to position, velocity, and acceleration limits. The problem is reformulated as a bi-level optimization whose lower level is a convex, closed-form subproblem that maximizes path speed for a fixed trajectory, while the upper level updates the trajectory using a single-chain kinematic formulation and the subgradient of the lower-level value. Numerical results demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信