基于改进范数界和多数投票方案的带限函数同步置信区域非随机化

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Balázs Csanád Csáji;Bálint Horváth
{"title":"基于改进范数界和多数投票方案的带限函数同步置信区域非随机化","authors":"Balázs Csanád Csáji;Bálint Horváth","doi":"10.1109/LCSYS.2025.3583328","DOIUrl":null,"url":null,"abstract":"Band-limited functions are fundamental objects that are widely used in systems theory and signal processing. In this letter we refine a recent nonparametric, nonasymptotic method for constructing simultaneous confidence regions for band-limited functions from noisy input-output measurements, by working in a Paley-Wiener reproducing kernel Hilbert space. Kernel norm bounds are tightened using a uniformly-randomized Hoeffding’s inequality for small samples and an empirical Bernstein bound for larger ones. We derive an approximate threshold, based on the sample size and how informative the inputs are, that governs which bound to deploy. Finally, we apply majority voting to aggregate confidence sets from random subsamples, boosting both stability and region size. We prove that even per-input aggregated intervals retain their simultaneous coverage guarantee. These refinements are also validated through numerical experiments.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1381-1386"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11052262","citationCount":"0","resultStr":"{\"title\":\"Derandomizing Simultaneous Confidence Regions for Band-Limited Functions by Improved Norm Bounds and Majority-Voting Schemes\",\"authors\":\"Balázs Csanád Csáji;Bálint Horváth\",\"doi\":\"10.1109/LCSYS.2025.3583328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Band-limited functions are fundamental objects that are widely used in systems theory and signal processing. In this letter we refine a recent nonparametric, nonasymptotic method for constructing simultaneous confidence regions for band-limited functions from noisy input-output measurements, by working in a Paley-Wiener reproducing kernel Hilbert space. Kernel norm bounds are tightened using a uniformly-randomized Hoeffding’s inequality for small samples and an empirical Bernstein bound for larger ones. We derive an approximate threshold, based on the sample size and how informative the inputs are, that governs which bound to deploy. Finally, we apply majority voting to aggregate confidence sets from random subsamples, boosting both stability and region size. We prove that even per-input aggregated intervals retain their simultaneous coverage guarantee. These refinements are also validated through numerical experiments.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"1381-1386\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11052262\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11052262/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11052262/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

带限函数是系统理论和信号处理中广泛应用的基本对象。在这封信中,我们改进了最近的一种非参数,非渐近的方法,用于从噪声输入输出测量中构造带限制函数的同时置信区域,通过在Paley-Wiener再现核希尔伯特空间中工作。对小样本使用均匀随机的Hoeffding不等式,对大样本使用经验Bernstein界来收紧核范数界。我们根据样本大小和输入的信息量推导出一个近似的阈值,该阈值决定了部署的约束。最后,我们将多数投票应用于随机子样本的聚合置信集,从而提高稳定性和区域大小。我们证明了即使每个输入聚合区间也保留了它们的同时覆盖保证。这些改进也通过数值实验得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derandomizing Simultaneous Confidence Regions for Band-Limited Functions by Improved Norm Bounds and Majority-Voting Schemes
Band-limited functions are fundamental objects that are widely used in systems theory and signal processing. In this letter we refine a recent nonparametric, nonasymptotic method for constructing simultaneous confidence regions for band-limited functions from noisy input-output measurements, by working in a Paley-Wiener reproducing kernel Hilbert space. Kernel norm bounds are tightened using a uniformly-randomized Hoeffding’s inequality for small samples and an empirical Bernstein bound for larger ones. We derive an approximate threshold, based on the sample size and how informative the inputs are, that governs which bound to deploy. Finally, we apply majority voting to aggregate confidence sets from random subsamples, boosting both stability and region size. We prove that even per-input aggregated intervals retain their simultaneous coverage guarantee. These refinements are also validated through numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信