线性Bellman方程的精确解

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
David Ohlin;Richard Pates;Murat Arcak
{"title":"线性Bellman方程的精确解","authors":"David Ohlin;Richard Pates;Murat Arcak","doi":"10.1109/LCSYS.2025.3582908","DOIUrl":null,"url":null,"abstract":"This letter presents sufficient conditions for optimal control of systems with dynamics given by a linear operator, in order to obtain an explicit solution to the Bellman equation that can be calculated in a distributed fashion. Further, the class of Linearly Solvable MDP is reformulated as a continuous-state optimal control problem. It is shown that this class naturally satisfies the conditions for explicit solution of the Bellman equation, motivating the extension of previous results to semilinear dynamics to account for input nonlinearities. The applicability of the given conditions is illustrated in scenarios with linear and quadratic cost, corresponding to the Stochastic Shortest Path and Linear-Quadratic Regulator problems.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1568-1573"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Exact Solutions to the Linear Bellman Equation\",\"authors\":\"David Ohlin;Richard Pates;Murat Arcak\",\"doi\":\"10.1109/LCSYS.2025.3582908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents sufficient conditions for optimal control of systems with dynamics given by a linear operator, in order to obtain an explicit solution to the Bellman equation that can be calculated in a distributed fashion. Further, the class of Linearly Solvable MDP is reformulated as a continuous-state optimal control problem. It is shown that this class naturally satisfies the conditions for explicit solution of the Bellman equation, motivating the extension of previous results to semilinear dynamics to account for input nonlinearities. The applicability of the given conditions is illustrated in scenarios with linear and quadratic cost, corresponding to the Stochastic Shortest Path and Linear-Quadratic Regulator problems.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"1568-1573\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11050909/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11050909/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了由线性算子给出动力学系统的最优控制的充分条件,以便获得可以以分布式方式计算的Bellman方程的显式解。进一步,将线性可解的MDP问题重新表述为连续状态最优控制问题。结果表明,该类自然地满足Bellman方程显式解的条件,并将先前的结果推广到半线性动力学以解释输入非线性。给出的条件在线性和二次代价情况下的适用性,对应于随机最短路径和线性二次调节器问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Exact Solutions to the Linear Bellman Equation
This letter presents sufficient conditions for optimal control of systems with dynamics given by a linear operator, in order to obtain an explicit solution to the Bellman equation that can be calculated in a distributed fashion. Further, the class of Linearly Solvable MDP is reformulated as a continuous-state optimal control problem. It is shown that this class naturally satisfies the conditions for explicit solution of the Bellman equation, motivating the extension of previous results to semilinear dynamics to account for input nonlinearities. The applicability of the given conditions is illustrated in scenarios with linear and quadratic cost, corresponding to the Stochastic Shortest Path and Linear-Quadratic Regulator problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信