信息越多并不总是越好:反馈和开环信息模式中零和局部纳什均衡之间的联系

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Kushagra Gupta;Ross E. Allen;David Fridovich-Keil;Ufuk Topcu
{"title":"信息越多并不总是越好:反馈和开环信息模式中零和局部纳什均衡之间的联系","authors":"Kushagra Gupta;Ross E. Allen;David Fridovich-Keil;Ufuk Topcu","doi":"10.1109/LCSYS.2025.3583329","DOIUrl":null,"url":null,"abstract":"Noncooperative dynamic game theory provides a principled approach to modeling sequential decision-making among multiple noncommunicative agents. A key focus is on finding Nash equilibria in two-agent zero-sum dynamic games under various information structures. A well-known result states that in linear-quadratic games, unique Nash equilibria under feedback and open-loop information structures yield identical trajectories. Motivated by two key perspectives—(i) real-world problems extend beyond linear-quadratic settings and lack unique equilibria, making only local Nash equilibria computable, and (ii) local open-loop Nash equilibria (OLNE) are easier to compute than local feedback Nash equilibria (FBNE)—it is natural to ask whether a similar result holds for local equilibria in zero-sum games. To this end, we establish that for a broad class of zero-sum games with potentially nonconvex-nonconcave objectives and nonlinear dynamics: (i) the state/control trajectory of a local FBNE satisfies local OLNE first-order optimality conditions, and vice versa, (ii) a local FBNE trajectory satisfies local OLNE second-order necessary conditions, (iii) a local FBNE trajectory satisfying feedback sufficiency conditions also constitutes a local OLNE, and (iv) with additional hard constraints on agents’ actuations, a local FBNE where strict complementarity holds satisfies local OLNE first-order optimality conditions, and vice versa.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1405-1410"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More Information Is Not Always Better: Connections Between Zero-Sum Local Nash Equilibria in Feedback and Open-Loop Information Patterns\",\"authors\":\"Kushagra Gupta;Ross E. Allen;David Fridovich-Keil;Ufuk Topcu\",\"doi\":\"10.1109/LCSYS.2025.3583329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noncooperative dynamic game theory provides a principled approach to modeling sequential decision-making among multiple noncommunicative agents. A key focus is on finding Nash equilibria in two-agent zero-sum dynamic games under various information structures. A well-known result states that in linear-quadratic games, unique Nash equilibria under feedback and open-loop information structures yield identical trajectories. Motivated by two key perspectives—(i) real-world problems extend beyond linear-quadratic settings and lack unique equilibria, making only local Nash equilibria computable, and (ii) local open-loop Nash equilibria (OLNE) are easier to compute than local feedback Nash equilibria (FBNE)—it is natural to ask whether a similar result holds for local equilibria in zero-sum games. To this end, we establish that for a broad class of zero-sum games with potentially nonconvex-nonconcave objectives and nonlinear dynamics: (i) the state/control trajectory of a local FBNE satisfies local OLNE first-order optimality conditions, and vice versa, (ii) a local FBNE trajectory satisfies local OLNE second-order necessary conditions, (iii) a local FBNE trajectory satisfying feedback sufficiency conditions also constitutes a local OLNE, and (iv) with additional hard constraints on agents’ actuations, a local FBNE where strict complementarity holds satisfies local OLNE first-order optimality conditions, and vice versa.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"1405-1410\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11052300/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11052300/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

非合作动态博弈论为多个非沟通主体之间的顺序决策建模提供了一种原则性的方法。研究了不同信息结构下双智能体零和动态博弈的纳什均衡问题。一个众所周知的结果表明,在线性二次博弈中,反馈和开环信息结构下的唯一纳什均衡产生相同的轨迹。在两个关键观点的激励下——(i)现实世界的问题超出了线性二次设定,缺乏唯一的均衡,使得只有局部纳什均衡是可计算的,(ii)局部开环纳什均衡(OLNE)比局部反馈纳什均衡(FBNE)更容易计算——很自然地要问,在零和博弈中,类似的结果是否适用于局部均衡。为此,我们建立了一类具有潜在非凸非凹目标和非线性动力学的零和博弈:(i)局部FBNE的状态/控制轨迹满足局部OLNE的一阶最优性条件,反之亦然;(ii)局部FBNE轨迹满足局部OLNE的二阶必要条件;(iii)满足反馈充足性条件的局部FBNE轨迹也构成局部OLNE; (iv)由于对代理的驱动有额外的硬约束,严格互补成立的局部FBNE满足局部OLNE的一阶最优性条件,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More Information Is Not Always Better: Connections Between Zero-Sum Local Nash Equilibria in Feedback and Open-Loop Information Patterns
Noncooperative dynamic game theory provides a principled approach to modeling sequential decision-making among multiple noncommunicative agents. A key focus is on finding Nash equilibria in two-agent zero-sum dynamic games under various information structures. A well-known result states that in linear-quadratic games, unique Nash equilibria under feedback and open-loop information structures yield identical trajectories. Motivated by two key perspectives—(i) real-world problems extend beyond linear-quadratic settings and lack unique equilibria, making only local Nash equilibria computable, and (ii) local open-loop Nash equilibria (OLNE) are easier to compute than local feedback Nash equilibria (FBNE)—it is natural to ask whether a similar result holds for local equilibria in zero-sum games. To this end, we establish that for a broad class of zero-sum games with potentially nonconvex-nonconcave objectives and nonlinear dynamics: (i) the state/control trajectory of a local FBNE satisfies local OLNE first-order optimality conditions, and vice versa, (ii) a local FBNE trajectory satisfies local OLNE second-order necessary conditions, (iii) a local FBNE trajectory satisfying feedback sufficiency conditions also constitutes a local OLNE, and (iv) with additional hard constraints on agents’ actuations, a local FBNE where strict complementarity holds satisfies local OLNE first-order optimality conditions, and vice versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信