RN中包含分数阶p-拉普拉斯算子的临界Kirchhoff-Choquard型方程的多重解

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
Jin Liang, Zhi-Cheng Xiong
{"title":"RN中包含分数阶p-拉普拉斯算子的临界Kirchhoff-Choquard型方程的多重解","authors":"Jin Liang,&nbsp;Zhi-Cheng Xiong","doi":"10.1016/j.cnsns.2025.109098","DOIUrl":null,"url":null,"abstract":"<div><div>We are concerned with a critical Kirchhoff–Choquard type equation involving the fractional <span><math><mi>p</mi></math></span>-Laplacian in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> <span><span><span><math><mrow><mi>M</mi><mfenced><mrow><msup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfenced><mfenced><mrow><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><msubsup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfrac><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mfenced><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfenced><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><msubsup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfrac><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mfenced><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfenced><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>b</mi><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>Based on a new version of the concentration compactness alternative, we obtain the multiplicity and concentration property of solutions for the problem when <span><math><mi>f</mi></math></span> (<span><math><mrow><mi>x</mi><mo>,</mo><mi>u</mi></mrow></math></span>) = <span><math><mi>h</mi></math></span> (<span><math><mi>x</mi></math></span>)<span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi></mrow></math></span>. For <span><math><mrow><mi>q</mi><mo>∈</mo></mrow></math></span> (<span><math><mrow><mi>p</mi><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> (<span><math><mi>α</mi></math></span>)], we establish desired results by applying Benci’s pseudo-index theory and some new techniques, where the much more difficult doubly critical case of <span><math><mrow><mi>q</mi><mo>=</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> (<span><math><mi>α</mi></math></span>) is considered, which is a hard problem and has rarely been studied previously. Moreover, for the case of <span><math><mrow><mi>q</mi><mo>=</mo><mi>p</mi></mrow></math></span> , we prove the existence of infinitely many solutions for the problem above by means of the truncation function method and Krasnoselskii’s genus theory. For the case of <span><math><mrow><mi>q</mi><mo>∈</mo></mrow></math></span> (<span><math><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></math></span>), we also obtain a result on the infinitely many solutions in a general setting in view of the dual fountain theorem.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"151 ","pages":"Article 109098"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions for a critical Kirchhoff–Choquard type equation involving fractional p-Laplacian in RN\",\"authors\":\"Jin Liang,&nbsp;Zhi-Cheng Xiong\",\"doi\":\"10.1016/j.cnsns.2025.109098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We are concerned with a critical Kirchhoff–Choquard type equation involving the fractional <span><math><mi>p</mi></math></span>-Laplacian in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> <span><span><span><math><mrow><mi>M</mi><mfenced><mrow><msup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfenced><mfenced><mrow><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><msubsup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfrac><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mfenced><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfenced><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><msubsup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfrac><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mfenced><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfenced><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>b</mi><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>Based on a new version of the concentration compactness alternative, we obtain the multiplicity and concentration property of solutions for the problem when <span><math><mi>f</mi></math></span> (<span><math><mrow><mi>x</mi><mo>,</mo><mi>u</mi></mrow></math></span>) = <span><math><mi>h</mi></math></span> (<span><math><mi>x</mi></math></span>)<span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi></mrow></math></span>. For <span><math><mrow><mi>q</mi><mo>∈</mo></mrow></math></span> (<span><math><mrow><mi>p</mi><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> (<span><math><mi>α</mi></math></span>)], we establish desired results by applying Benci’s pseudo-index theory and some new techniques, where the much more difficult doubly critical case of <span><math><mrow><mi>q</mi><mo>=</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> (<span><math><mi>α</mi></math></span>) is considered, which is a hard problem and has rarely been studied previously. Moreover, for the case of <span><math><mrow><mi>q</mi><mo>=</mo><mi>p</mi></mrow></math></span> , we prove the existence of infinitely many solutions for the problem above by means of the truncation function method and Krasnoselskii’s genus theory. For the case of <span><math><mrow><mi>q</mi><mo>∈</mo></mrow></math></span> (<span><math><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></math></span>), we also obtain a result on the infinitely many solutions in a general setting in view of the dual fountain theorem.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"151 \",\"pages\":\"Article 109098\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042500509X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042500509X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个临界Kirchhoff-Choquard型方程,该方程涉及RN M‖u‖p(−Δ)‖p +V(x)|u|p−2u=λ2pμ,s∗ps∗μq2Kμ∗|u|ps∗μq1|u|ps∗μq2−2u+λ2pμ,s∗ps∗μq1Kμ∗|u|ps∗μq2|u|ps∗μq1−2u+bf(x,u)|x|α。基于新版本的浓度紧性选择,我们得到了当f (x,u) = h (x)|u|q−1u时问题解的多重性和浓度性质。对于q∈(p,ps∗(α)],我们利用Benci伪指标理论和一些新技术建立了期望结果,其中考虑了更为困难的双临界情况q=ps∗(α),这是一个以前很少研究的难题。此外,对于q=p的情况,我们利用截断函数法和Krasnoselskii的属理论证明了上述问题存在无穷多个解。对于q∈(1,p)的情况,我们也利用对偶喷泉定理得到了一般情况下无穷多解的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple solutions for a critical Kirchhoff–Choquard type equation involving fractional p-Laplacian in RN
We are concerned with a critical Kirchhoff–Choquard type equation involving the fractional p-Laplacian in RN Mup(Δ)psu+V(x)|u|p2u=λ2pμ,spsμq2Kμ|u|psμq1|u|psμq22u+λ2pμ,spsμq1Kμ|u|psμq2|u|psμq12u+bf(x,u)|x|α.Based on a new version of the concentration compactness alternative, we obtain the multiplicity and concentration property of solutions for the problem when f (x,u) = h (x)|u|q1u. For q (p,ps (α)], we establish desired results by applying Benci’s pseudo-index theory and some new techniques, where the much more difficult doubly critical case of q=ps (α) is considered, which is a hard problem and has rarely been studied previously. Moreover, for the case of q=p , we prove the existence of infinitely many solutions for the problem above by means of the truncation function method and Krasnoselskii’s genus theory. For the case of q (1,p), we also obtain a result on the infinitely many solutions in a general setting in view of the dual fountain theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信