{"title":"RN中包含分数阶p-拉普拉斯算子的临界Kirchhoff-Choquard型方程的多重解","authors":"Jin Liang, Zhi-Cheng Xiong","doi":"10.1016/j.cnsns.2025.109098","DOIUrl":null,"url":null,"abstract":"<div><div>We are concerned with a critical Kirchhoff–Choquard type equation involving the fractional <span><math><mi>p</mi></math></span>-Laplacian in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> <span><span><span><math><mrow><mi>M</mi><mfenced><mrow><msup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfenced><mfenced><mrow><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><msubsup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfrac><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mfenced><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfenced><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><msubsup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfrac><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mfenced><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfenced><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>b</mi><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>Based on a new version of the concentration compactness alternative, we obtain the multiplicity and concentration property of solutions for the problem when <span><math><mi>f</mi></math></span> (<span><math><mrow><mi>x</mi><mo>,</mo><mi>u</mi></mrow></math></span>) = <span><math><mi>h</mi></math></span> (<span><math><mi>x</mi></math></span>)<span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi></mrow></math></span>. For <span><math><mrow><mi>q</mi><mo>∈</mo></mrow></math></span> (<span><math><mrow><mi>p</mi><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> (<span><math><mi>α</mi></math></span>)], we establish desired results by applying Benci’s pseudo-index theory and some new techniques, where the much more difficult doubly critical case of <span><math><mrow><mi>q</mi><mo>=</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> (<span><math><mi>α</mi></math></span>) is considered, which is a hard problem and has rarely been studied previously. Moreover, for the case of <span><math><mrow><mi>q</mi><mo>=</mo><mi>p</mi></mrow></math></span> , we prove the existence of infinitely many solutions for the problem above by means of the truncation function method and Krasnoselskii’s genus theory. For the case of <span><math><mrow><mi>q</mi><mo>∈</mo></mrow></math></span> (<span><math><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></math></span>), we also obtain a result on the infinitely many solutions in a general setting in view of the dual fountain theorem.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"151 ","pages":"Article 109098"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions for a critical Kirchhoff–Choquard type equation involving fractional p-Laplacian in RN\",\"authors\":\"Jin Liang, Zhi-Cheng Xiong\",\"doi\":\"10.1016/j.cnsns.2025.109098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We are concerned with a critical Kirchhoff–Choquard type equation involving the fractional <span><math><mi>p</mi></math></span>-Laplacian in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> <span><span><span><math><mrow><mi>M</mi><mfenced><mrow><msup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfenced><mfenced><mrow><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><msubsup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfrac><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mfenced><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfenced><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><msubsup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfrac><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mfenced><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfenced><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>b</mi><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>Based on a new version of the concentration compactness alternative, we obtain the multiplicity and concentration property of solutions for the problem when <span><math><mi>f</mi></math></span> (<span><math><mrow><mi>x</mi><mo>,</mo><mi>u</mi></mrow></math></span>) = <span><math><mi>h</mi></math></span> (<span><math><mi>x</mi></math></span>)<span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi></mrow></math></span>. For <span><math><mrow><mi>q</mi><mo>∈</mo></mrow></math></span> (<span><math><mrow><mi>p</mi><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> (<span><math><mi>α</mi></math></span>)], we establish desired results by applying Benci’s pseudo-index theory and some new techniques, where the much more difficult doubly critical case of <span><math><mrow><mi>q</mi><mo>=</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> (<span><math><mi>α</mi></math></span>) is considered, which is a hard problem and has rarely been studied previously. Moreover, for the case of <span><math><mrow><mi>q</mi><mo>=</mo><mi>p</mi></mrow></math></span> , we prove the existence of infinitely many solutions for the problem above by means of the truncation function method and Krasnoselskii’s genus theory. For the case of <span><math><mrow><mi>q</mi><mo>∈</mo></mrow></math></span> (<span><math><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></math></span>), we also obtain a result on the infinitely many solutions in a general setting in view of the dual fountain theorem.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"151 \",\"pages\":\"Article 109098\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042500509X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042500509X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了一个临界Kirchhoff-Choquard型方程,该方程涉及RN M‖u‖p(−Δ)‖p +V(x)|u|p−2u=λ2pμ,s∗ps∗μq2Kμ∗|u|ps∗μq1|u|ps∗μq2−2u+λ2pμ,s∗ps∗μq1Kμ∗|u|ps∗μq2|u|ps∗μq1−2u+bf(x,u)|x|α。基于新版本的浓度紧性选择,我们得到了当f (x,u) = h (x)|u|q−1u时问题解的多重性和浓度性质。对于q∈(p,ps∗(α)],我们利用Benci伪指标理论和一些新技术建立了期望结果,其中考虑了更为困难的双临界情况q=ps∗(α),这是一个以前很少研究的难题。此外,对于q=p的情况,我们利用截断函数法和Krasnoselskii的属理论证明了上述问题存在无穷多个解。对于q∈(1,p)的情况,我们也利用对偶喷泉定理得到了一般情况下无穷多解的结果。
Multiple solutions for a critical Kirchhoff–Choquard type equation involving fractional p-Laplacian in RN
We are concerned with a critical Kirchhoff–Choquard type equation involving the fractional -Laplacian in Based on a new version of the concentration compactness alternative, we obtain the multiplicity and concentration property of solutions for the problem when () = (). For ( ()], we establish desired results by applying Benci’s pseudo-index theory and some new techniques, where the much more difficult doubly critical case of () is considered, which is a hard problem and has rarely been studied previously. Moreover, for the case of , we prove the existence of infinitely many solutions for the problem above by means of the truncation function method and Krasnoselskii’s genus theory. For the case of (), we also obtain a result on the infinitely many solutions in a general setting in view of the dual fountain theorem.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.