{"title":"热厌氧菌PSU-2和产甲烷混合培养在嗜热双环生物反应器中提高棕榈油厂废水中生物乙烷的产量","authors":"Supattra In-chan , Chonticha Mamimin , Nantharat Phruksaphithak , Sompong O-Thong","doi":"10.1016/j.crcon.2024.100273","DOIUrl":null,"url":null,"abstract":"<div><div>A novel thermophilic two-ring bioreactor was employed to produce biohythane from palm oil mill effluent (POME) using <em>Thermoanaerobacterium thermosaccharolyticum</em> PSU-2 and thermophilic methanogenic mixed cultures. The reactor system demonstrated impressive performance, achieving hydrogen and methane yields of 113.3 ± 15.0 mL/g-VS and 473.0 ± 60.0 mL/g-VS, respectively, with a total biohythane composition of 4.3 % H<sub>2</sub>, 37.1 % CO<sub>2,</sub> and 58.6 % CH<sub>4</sub>. The process exhibited high treatment efficiency, with COD and VS removal efficiencies reaching 93.7 % and 84.3 %, respectively. Microbial community analysis revealed the crucial roles of various microorganisms in the biohythane production process. <em>Thermoclostridium</em> sp., <em>Thermoanaerobacterium</em> sp., and <em>Anaerobranca</em> sp. were identified as key players in hydrogen production, while <em>Bacteroides</em> sp. and <em>Methanobacterium</em> sp. were found to be essential for methane production. The optimization of operating conditions, including pH (5.0–8.0), temperature (55 °C), and hydraulic retention time (2 d for H<sub>2</sub> and 10 d for CH<sub>4</sub>), significantly enhanced biohythane production efficiency. The techno-economic analysis demonstrated the economic viability of the thermophilic two-ring bioreactor system, with a net present value of 4,186,000 USD, an internal rate of return of 82 %, and a payback period of 1.4 years. These findings highlight the potential of this innovative technology as a sustainable and economically attractive solution for treating POME and simultaneously producing renewable energy in the form of biohythane, contributing to the sustainable development of the palm oil industry and the mitigation of greenhouse gas emissions.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 3","pages":"Article 100273"},"PeriodicalIF":7.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of biohythane production from palm oil mill effluent by Thermoanaerobacterium thermosaccharolyticum PSU-2 and methanogenic mixed cultures using a thermophilic two-ring bioreactor\",\"authors\":\"Supattra In-chan , Chonticha Mamimin , Nantharat Phruksaphithak , Sompong O-Thong\",\"doi\":\"10.1016/j.crcon.2024.100273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel thermophilic two-ring bioreactor was employed to produce biohythane from palm oil mill effluent (POME) using <em>Thermoanaerobacterium thermosaccharolyticum</em> PSU-2 and thermophilic methanogenic mixed cultures. The reactor system demonstrated impressive performance, achieving hydrogen and methane yields of 113.3 ± 15.0 mL/g-VS and 473.0 ± 60.0 mL/g-VS, respectively, with a total biohythane composition of 4.3 % H<sub>2</sub>, 37.1 % CO<sub>2,</sub> and 58.6 % CH<sub>4</sub>. The process exhibited high treatment efficiency, with COD and VS removal efficiencies reaching 93.7 % and 84.3 %, respectively. Microbial community analysis revealed the crucial roles of various microorganisms in the biohythane production process. <em>Thermoclostridium</em> sp., <em>Thermoanaerobacterium</em> sp., and <em>Anaerobranca</em> sp. were identified as key players in hydrogen production, while <em>Bacteroides</em> sp. and <em>Methanobacterium</em> sp. were found to be essential for methane production. The optimization of operating conditions, including pH (5.0–8.0), temperature (55 °C), and hydraulic retention time (2 d for H<sub>2</sub> and 10 d for CH<sub>4</sub>), significantly enhanced biohythane production efficiency. The techno-economic analysis demonstrated the economic viability of the thermophilic two-ring bioreactor system, with a net present value of 4,186,000 USD, an internal rate of return of 82 %, and a payback period of 1.4 years. These findings highlight the potential of this innovative technology as a sustainable and economically attractive solution for treating POME and simultaneously producing renewable energy in the form of biohythane, contributing to the sustainable development of the palm oil industry and the mitigation of greenhouse gas emissions.</div></div>\",\"PeriodicalId\":52958,\"journal\":{\"name\":\"Carbon Resources Conversion\",\"volume\":\"8 3\",\"pages\":\"Article 100273\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Resources Conversion\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588913324000620\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000620","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Enhancement of biohythane production from palm oil mill effluent by Thermoanaerobacterium thermosaccharolyticum PSU-2 and methanogenic mixed cultures using a thermophilic two-ring bioreactor
A novel thermophilic two-ring bioreactor was employed to produce biohythane from palm oil mill effluent (POME) using Thermoanaerobacterium thermosaccharolyticum PSU-2 and thermophilic methanogenic mixed cultures. The reactor system demonstrated impressive performance, achieving hydrogen and methane yields of 113.3 ± 15.0 mL/g-VS and 473.0 ± 60.0 mL/g-VS, respectively, with a total biohythane composition of 4.3 % H2, 37.1 % CO2, and 58.6 % CH4. The process exhibited high treatment efficiency, with COD and VS removal efficiencies reaching 93.7 % and 84.3 %, respectively. Microbial community analysis revealed the crucial roles of various microorganisms in the biohythane production process. Thermoclostridium sp., Thermoanaerobacterium sp., and Anaerobranca sp. were identified as key players in hydrogen production, while Bacteroides sp. and Methanobacterium sp. were found to be essential for methane production. The optimization of operating conditions, including pH (5.0–8.0), temperature (55 °C), and hydraulic retention time (2 d for H2 and 10 d for CH4), significantly enhanced biohythane production efficiency. The techno-economic analysis demonstrated the economic viability of the thermophilic two-ring bioreactor system, with a net present value of 4,186,000 USD, an internal rate of return of 82 %, and a payback period of 1.4 years. These findings highlight the potential of this innovative technology as a sustainable and economically attractive solution for treating POME and simultaneously producing renewable energy in the form of biohythane, contributing to the sustainable development of the palm oil industry and the mitigation of greenhouse gas emissions.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.