钙钛矿氢化物LiBH3 (B = Cu, Zn, Cd)的储氢、电子、热力学和力学第一性原理研究

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Ahmad Ayyaz , Muhammad Abaid Ullah , Noura Dawas Alkhaldi , Fawziah Alhajri , G.I. Ameereh , Ali Akremi , Murefah mana Al-Anazy , Q. Mahmood
{"title":"钙钛矿氢化物LiBH3 (B = Cu, Zn, Cd)的储氢、电子、热力学和力学第一性原理研究","authors":"Ahmad Ayyaz ,&nbsp;Muhammad Abaid Ullah ,&nbsp;Noura Dawas Alkhaldi ,&nbsp;Fawziah Alhajri ,&nbsp;G.I. Ameereh ,&nbsp;Ali Akremi ,&nbsp;Murefah mana Al-Anazy ,&nbsp;Q. Mahmood","doi":"10.1016/j.jpowsour.2025.237803","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite hydrides are emerging aspirants for hydrogen (H<sub>2</sub>) storage and renewable energy potential. This article comprehensively addresses hydrogen storage capacity, desorption temperature, and physical aspects of LiBH<sub>3</sub> (B=Cu, Zn, Cd) using the WIEN2k code. The mechanical and thermodynamic stability is confirmed by Born mechanical criteria, total energy versus simulation time obtained through ab initio molecular dynamics (AIMD), and formation energy analysis. LiBH<sub>3</sub> compounds exhibit promise for H<sub>2</sub> storage perspectives, showcasing significant gravimetric H<sub>2</sub> storage capacities of 4.12 wt%, 4.02 wt%, and 2.48 wt% for LiCuH<sub>3</sub>, LiZnH<sub>3</sub>, and LiCdH<sub>3</sub>. The temperature of H<sub>2</sub> desorption is 597.7 K, 435.5 K, and 530.9 K, respectively. The thermodynamic parameters elucidate the vibrational characteristics such as entropy, heat capacity, thermal expansion, Debye temperature at lower and higher temperatures, and various pressures. These characteristics further validate the thermodynamic stability of the studied hydrides. Moreover, the band diagram and density of states analysis confirm the metallicity of LiCuH<sub>3</sub> and LiZnH<sub>3</sub>, whereas a band gap of 0.21 eV for LiCdH<sub>3</sub> substantiates the semiconductor with a narrow energy gap. These reported intriguing H<sub>2</sub> storage aspects may facilitate the development of effective hydrogen adsorption and release technologies.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"654 ","pages":"Article 237803"},"PeriodicalIF":7.9000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First principles study of hydrogen storage, electronic, thermodynamic, and mechanical aspects of Perovskite hydrides LiBH3 (B = Cu, Zn, Cd)\",\"authors\":\"Ahmad Ayyaz ,&nbsp;Muhammad Abaid Ullah ,&nbsp;Noura Dawas Alkhaldi ,&nbsp;Fawziah Alhajri ,&nbsp;G.I. Ameereh ,&nbsp;Ali Akremi ,&nbsp;Murefah mana Al-Anazy ,&nbsp;Q. Mahmood\",\"doi\":\"10.1016/j.jpowsour.2025.237803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite hydrides are emerging aspirants for hydrogen (H<sub>2</sub>) storage and renewable energy potential. This article comprehensively addresses hydrogen storage capacity, desorption temperature, and physical aspects of LiBH<sub>3</sub> (B=Cu, Zn, Cd) using the WIEN2k code. The mechanical and thermodynamic stability is confirmed by Born mechanical criteria, total energy versus simulation time obtained through ab initio molecular dynamics (AIMD), and formation energy analysis. LiBH<sub>3</sub> compounds exhibit promise for H<sub>2</sub> storage perspectives, showcasing significant gravimetric H<sub>2</sub> storage capacities of 4.12 wt%, 4.02 wt%, and 2.48 wt% for LiCuH<sub>3</sub>, LiZnH<sub>3</sub>, and LiCdH<sub>3</sub>. The temperature of H<sub>2</sub> desorption is 597.7 K, 435.5 K, and 530.9 K, respectively. The thermodynamic parameters elucidate the vibrational characteristics such as entropy, heat capacity, thermal expansion, Debye temperature at lower and higher temperatures, and various pressures. These characteristics further validate the thermodynamic stability of the studied hydrides. Moreover, the band diagram and density of states analysis confirm the metallicity of LiCuH<sub>3</sub> and LiZnH<sub>3</sub>, whereas a band gap of 0.21 eV for LiCdH<sub>3</sub> substantiates the semiconductor with a narrow energy gap. These reported intriguing H<sub>2</sub> storage aspects may facilitate the development of effective hydrogen adsorption and release technologies.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"654 \",\"pages\":\"Article 237803\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325016398\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325016398","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿氢化物是氢(H2)储存和可再生能源潜力的新兴志向。本文使用WIEN2k代码全面解决了LiBH3 (B=Cu, Zn, Cd)的储氢能力、解吸温度和物理方面的问题。力学和热力学稳定性由Born力学准则、从头算分子动力学(AIMD)获得的总能量与模拟时间以及地层能量分析证实。LiBH3化合物在储氢方面表现出良好的前景,LiCuH3、LiZnH3和LiCdH3的重量储氢容量分别为4.12 wt%、4.02 wt%和2.48 wt%。H2的解吸温度分别为597.7 K、435.5 K和530.9 K。热力学参数阐明了振动特性,如熵、热容、热膨胀、低温和高温下的德拜温度以及各种压力。这些特征进一步验证了所研究的氢化物的热力学稳定性。此外,带图和态密度分析证实了LiCuH3和LiZnH3的金属丰度,而LiCdH3的带隙为0.21 eV,证实了该半导体具有窄能隙。这些有趣的H2存储方面的报道可能促进有效的氢吸附和释放技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First principles study of hydrogen storage, electronic, thermodynamic, and mechanical aspects of Perovskite hydrides LiBH3 (B = Cu, Zn, Cd)
Perovskite hydrides are emerging aspirants for hydrogen (H2) storage and renewable energy potential. This article comprehensively addresses hydrogen storage capacity, desorption temperature, and physical aspects of LiBH3 (B=Cu, Zn, Cd) using the WIEN2k code. The mechanical and thermodynamic stability is confirmed by Born mechanical criteria, total energy versus simulation time obtained through ab initio molecular dynamics (AIMD), and formation energy analysis. LiBH3 compounds exhibit promise for H2 storage perspectives, showcasing significant gravimetric H2 storage capacities of 4.12 wt%, 4.02 wt%, and 2.48 wt% for LiCuH3, LiZnH3, and LiCdH3. The temperature of H2 desorption is 597.7 K, 435.5 K, and 530.9 K, respectively. The thermodynamic parameters elucidate the vibrational characteristics such as entropy, heat capacity, thermal expansion, Debye temperature at lower and higher temperatures, and various pressures. These characteristics further validate the thermodynamic stability of the studied hydrides. Moreover, the band diagram and density of states analysis confirm the metallicity of LiCuH3 and LiZnH3, whereas a band gap of 0.21 eV for LiCdH3 substantiates the semiconductor with a narrow energy gap. These reported intriguing H2 storage aspects may facilitate the development of effective hydrogen adsorption and release technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信