{"title":"利用CRISPR-Cas9系统快速高效地生成病毒基因组敲入细胞系以产生感染性病毒","authors":"Pooja Bhatia , Aas Mohd , Ishika Agrawal , Harshita Katiyar , Amit Goel , Meghali Aich , Debojyoti Chakraborty , Naga Suresh Veerapu","doi":"10.1016/j.jviromet.2025.115219","DOIUrl":null,"url":null,"abstract":"<div><div>Several medically significant viruses are difficult to propagate with conventional laboratory host systems, limiting their availability for detailed characterization, antiviral screening, and functional studies. A range of methods can be used to generate viruses, such as creating sophisticated cell lines, organoid cultures, and the utilization of animal models. Here, we report the generation and characterization of CRISPR-Cas9 edited Huh7 stable cell lines engineered to carry and express overlength HBV genotypes A, B, C and D and full HEV genomes in the AAVS1 site. Viral polymerase inhibitors and IFN-α significantly reduced the production of viral genomes and proteins from the edited cells. The virus released by the edited cells was infectious in permissive cell lines and could be blocked by neutralizing antibodies. This approach can extend to other viruses, like HCV genotype 3, that are hard to culture or to culturable viruses, like Dengue, for vaccine production.</div></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"338 ","pages":"Article 115219"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and efficient generation of viral genome knock-in cell lines using the CRISPR-Cas9 system to produce infectious virus\",\"authors\":\"Pooja Bhatia , Aas Mohd , Ishika Agrawal , Harshita Katiyar , Amit Goel , Meghali Aich , Debojyoti Chakraborty , Naga Suresh Veerapu\",\"doi\":\"10.1016/j.jviromet.2025.115219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Several medically significant viruses are difficult to propagate with conventional laboratory host systems, limiting their availability for detailed characterization, antiviral screening, and functional studies. A range of methods can be used to generate viruses, such as creating sophisticated cell lines, organoid cultures, and the utilization of animal models. Here, we report the generation and characterization of CRISPR-Cas9 edited Huh7 stable cell lines engineered to carry and express overlength HBV genotypes A, B, C and D and full HEV genomes in the AAVS1 site. Viral polymerase inhibitors and IFN-α significantly reduced the production of viral genomes and proteins from the edited cells. The virus released by the edited cells was infectious in permissive cell lines and could be blocked by neutralizing antibodies. This approach can extend to other viruses, like HCV genotype 3, that are hard to culture or to culturable viruses, like Dengue, for vaccine production.</div></div>\",\"PeriodicalId\":17663,\"journal\":{\"name\":\"Journal of virological methods\",\"volume\":\"338 \",\"pages\":\"Article 115219\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of virological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166093425001120\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093425001120","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Rapid and efficient generation of viral genome knock-in cell lines using the CRISPR-Cas9 system to produce infectious virus
Several medically significant viruses are difficult to propagate with conventional laboratory host systems, limiting their availability for detailed characterization, antiviral screening, and functional studies. A range of methods can be used to generate viruses, such as creating sophisticated cell lines, organoid cultures, and the utilization of animal models. Here, we report the generation and characterization of CRISPR-Cas9 edited Huh7 stable cell lines engineered to carry and express overlength HBV genotypes A, B, C and D and full HEV genomes in the AAVS1 site. Viral polymerase inhibitors and IFN-α significantly reduced the production of viral genomes and proteins from the edited cells. The virus released by the edited cells was infectious in permissive cell lines and could be blocked by neutralizing antibodies. This approach can extend to other viruses, like HCV genotype 3, that are hard to culture or to culturable viruses, like Dengue, for vaccine production.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.