Luis Vaquerizo , Iván Darío Gil , Salvador Tututi-Avila , Rafael B. Mato
{"title":"化学工程中的协同在线国际学习(COIL):为学生适应多元文化和国际工作环境做好准备","authors":"Luis Vaquerizo , Iván Darío Gil , Salvador Tututi-Avila , Rafael B. Mato","doi":"10.1016/j.ece.2025.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>In today’s interconnected society, chemical engineering students must be prepared to work in international and multicultural environments. However, in our experience, current chemical engineering curricula often fail to develop these competencies. This study aims to demonstrate the benefits of Collaborative Online International Learning (COIL) in chemical engineering education. For the first time, the COIL approach has been implemented in a simulation course. In addition to preparing students for international and multicultural work environments, this experience enhances their problem-solving and critical-thinking skills. Unlike other COIL applications, this project allows for multiple valid solutions, though not all are necessarily optimal. After two successful COIL projects involving chemical engineering students from the Universidad de Valladolid (Spain), the Universidad Nacional de Colombia, and the Universidad Autónoma de Nuevo León (Mexico), students reported feeling more confident in their knowledge and abilities, better prepared for multicultural and international work environments, and more capable of performing well in their first job. In both project editions, survey responses to related questions averaged above 4 out of 5. Key takeaways from this work are that, to accomplish the objectives of a COIL, it is essential to define the project timeline in advance, ensure a similar level of knowledge among students, confirm software access, establish a unified communication platform, and conduct individual kickoff meetings for each team. Additionally, effective international collaboration is more likely when no more than 50 % of a team’s members come from the same institution.</div></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"53 ","pages":"Pages 26-36"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Online International Learning (COIL) in chemical engineering: Preparing students for multicultural and international work environments\",\"authors\":\"Luis Vaquerizo , Iván Darío Gil , Salvador Tututi-Avila , Rafael B. Mato\",\"doi\":\"10.1016/j.ece.2025.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In today’s interconnected society, chemical engineering students must be prepared to work in international and multicultural environments. However, in our experience, current chemical engineering curricula often fail to develop these competencies. This study aims to demonstrate the benefits of Collaborative Online International Learning (COIL) in chemical engineering education. For the first time, the COIL approach has been implemented in a simulation course. In addition to preparing students for international and multicultural work environments, this experience enhances their problem-solving and critical-thinking skills. Unlike other COIL applications, this project allows for multiple valid solutions, though not all are necessarily optimal. After two successful COIL projects involving chemical engineering students from the Universidad de Valladolid (Spain), the Universidad Nacional de Colombia, and the Universidad Autónoma de Nuevo León (Mexico), students reported feeling more confident in their knowledge and abilities, better prepared for multicultural and international work environments, and more capable of performing well in their first job. In both project editions, survey responses to related questions averaged above 4 out of 5. Key takeaways from this work are that, to accomplish the objectives of a COIL, it is essential to define the project timeline in advance, ensure a similar level of knowledge among students, confirm software access, establish a unified communication platform, and conduct individual kickoff meetings for each team. Additionally, effective international collaboration is more likely when no more than 50 % of a team’s members come from the same institution.</div></div>\",\"PeriodicalId\":48509,\"journal\":{\"name\":\"Education for Chemical Engineers\",\"volume\":\"53 \",\"pages\":\"Pages 26-36\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education for Chemical Engineers\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749772825000338\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772825000338","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Collaborative Online International Learning (COIL) in chemical engineering: Preparing students for multicultural and international work environments
In today’s interconnected society, chemical engineering students must be prepared to work in international and multicultural environments. However, in our experience, current chemical engineering curricula often fail to develop these competencies. This study aims to demonstrate the benefits of Collaborative Online International Learning (COIL) in chemical engineering education. For the first time, the COIL approach has been implemented in a simulation course. In addition to preparing students for international and multicultural work environments, this experience enhances their problem-solving and critical-thinking skills. Unlike other COIL applications, this project allows for multiple valid solutions, though not all are necessarily optimal. After two successful COIL projects involving chemical engineering students from the Universidad de Valladolid (Spain), the Universidad Nacional de Colombia, and the Universidad Autónoma de Nuevo León (Mexico), students reported feeling more confident in their knowledge and abilities, better prepared for multicultural and international work environments, and more capable of performing well in their first job. In both project editions, survey responses to related questions averaged above 4 out of 5. Key takeaways from this work are that, to accomplish the objectives of a COIL, it is essential to define the project timeline in advance, ensure a similar level of knowledge among students, confirm software access, establish a unified communication platform, and conduct individual kickoff meetings for each team. Additionally, effective international collaboration is more likely when no more than 50 % of a team’s members come from the same institution.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning