Lukas Skerbisch , David Misch , Michael Drews , Klaus Arnberger , Volker Schuller , Andras Zamolyi , Thomas Hantschel , Daniel Palmowski , Adrian Kleine
{"title":"盖层完整性:维也纳盆地碳捕获和封存的关键因素","authors":"Lukas Skerbisch , David Misch , Michael Drews , Klaus Arnberger , Volker Schuller , Andras Zamolyi , Thomas Hantschel , Daniel Palmowski , Adrian Kleine","doi":"10.1016/j.ijggc.2025.104434","DOIUrl":null,"url":null,"abstract":"<div><div>It is commonly accepted that geologic CO<sub>2</sub> sequestration will be needed to meet carbon emission goals and reduce the impact of anthropogenic climate change. While the feasibility of carbon capture and storage (CCS) in saline aquifers and depleted oil and gas fields is proven, the social acceptance for CO<sub>2</sub> injection into geological formations remains low. Most sites under development are located offshore, while onshore storage is generally perceived more critically. The long-term integrity of barrier layers in the storage complex is considered a major risk factor to be acknowledged in approval procedures. This study therefore aims at providing a comprehensive view on the CO<sub>2</sub> seal capacity of mudstones in the Vienna Basin, a potential target area for future onshore CCS in depleted oil and gas fields or saline aquifers. In a first step, the static capillary seal capacity was modelled based on wireline log-derived porosity vs. depth trends. Secondly, all processes potentially causing a CO<sub>2</sub> breakthrough into the seal were identified and their respective contributions to CO<sub>2</sub> leakage from a hypothetical storage complex were quantified. Lastly, a 1D reactive transport model was established to evaluate mineralogy and porosity changes in a seal layer of known composition and formation water chemistry over post-operational time spans of 1000–100,000 years. For both static and dynamic sealing scenarios it is shown that seal capacity in the Vienna Basin is high, and storage risks associated with top seal integrity are likely negligible.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"146 ","pages":"Article 104434"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caprock integrity: A critical factor for carbon capture and storage in the Vienna Basin\",\"authors\":\"Lukas Skerbisch , David Misch , Michael Drews , Klaus Arnberger , Volker Schuller , Andras Zamolyi , Thomas Hantschel , Daniel Palmowski , Adrian Kleine\",\"doi\":\"10.1016/j.ijggc.2025.104434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is commonly accepted that geologic CO<sub>2</sub> sequestration will be needed to meet carbon emission goals and reduce the impact of anthropogenic climate change. While the feasibility of carbon capture and storage (CCS) in saline aquifers and depleted oil and gas fields is proven, the social acceptance for CO<sub>2</sub> injection into geological formations remains low. Most sites under development are located offshore, while onshore storage is generally perceived more critically. The long-term integrity of barrier layers in the storage complex is considered a major risk factor to be acknowledged in approval procedures. This study therefore aims at providing a comprehensive view on the CO<sub>2</sub> seal capacity of mudstones in the Vienna Basin, a potential target area for future onshore CCS in depleted oil and gas fields or saline aquifers. In a first step, the static capillary seal capacity was modelled based on wireline log-derived porosity vs. depth trends. Secondly, all processes potentially causing a CO<sub>2</sub> breakthrough into the seal were identified and their respective contributions to CO<sub>2</sub> leakage from a hypothetical storage complex were quantified. Lastly, a 1D reactive transport model was established to evaluate mineralogy and porosity changes in a seal layer of known composition and formation water chemistry over post-operational time spans of 1000–100,000 years. For both static and dynamic sealing scenarios it is shown that seal capacity in the Vienna Basin is high, and storage risks associated with top seal integrity are likely negligible.</div></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"146 \",\"pages\":\"Article 104434\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175058362500132X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175058362500132X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Caprock integrity: A critical factor for carbon capture and storage in the Vienna Basin
It is commonly accepted that geologic CO2 sequestration will be needed to meet carbon emission goals and reduce the impact of anthropogenic climate change. While the feasibility of carbon capture and storage (CCS) in saline aquifers and depleted oil and gas fields is proven, the social acceptance for CO2 injection into geological formations remains low. Most sites under development are located offshore, while onshore storage is generally perceived more critically. The long-term integrity of barrier layers in the storage complex is considered a major risk factor to be acknowledged in approval procedures. This study therefore aims at providing a comprehensive view on the CO2 seal capacity of mudstones in the Vienna Basin, a potential target area for future onshore CCS in depleted oil and gas fields or saline aquifers. In a first step, the static capillary seal capacity was modelled based on wireline log-derived porosity vs. depth trends. Secondly, all processes potentially causing a CO2 breakthrough into the seal were identified and their respective contributions to CO2 leakage from a hypothetical storage complex were quantified. Lastly, a 1D reactive transport model was established to evaluate mineralogy and porosity changes in a seal layer of known composition and formation water chemistry over post-operational time spans of 1000–100,000 years. For both static and dynamic sealing scenarios it is shown that seal capacity in the Vienna Basin is high, and storage risks associated with top seal integrity are likely negligible.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.