{"title":"干旱胁迫下植物-微生物组反应及其代谢物介导的增强作物抗逆性的相互作用","authors":"Aditya Sharma , Nandita Das , Piyush Pandey , Pratyoosh Shukla","doi":"10.1016/j.cpb.2025.100513","DOIUrl":null,"url":null,"abstract":"<div><div>The impacts of climate change are felt worldwide; however, drought stress poses significant challenges to global agriculture, affecting crop yields and food security. Understanding the multifaceted responses of crop plants to drought, particularly through their interaction with microbiomes and metabolites, is crucial and urgent for developing resilient agricultural systems. This review highlights the detrimental effects of drought on crop plants, including reduced water use efficiency, the production of free radicals, impaired plant growth and yield, and alterations in the photosynthetic apparatus. Additionally, this review addresses the research progress on plant responses, microbiome assemblages, metabolomic responses, and interactions under drought stress. By integrating findings from metabolomics, we discuss the “call for help” signal via root exudates in crop plants and their microbiomes during drought stress. Key aspects include the reciprocal exchange of metabolites (oxaloacetic acid, flavonoids, triterpenoids, phytoalexin, coumarin, and pyruvic acid), osmoprotectants (proline, sugars, amino acids), antioxidant enzymes (peroxidase, catalase, superoxide dismutase), and phytohormones (salicylic acid, jasmonic acid, and abscisic acid), along with the activation of stress-responsive pathways. Here, we explain the forefront of deciphering plant-microbiome interactions using cutting-edge metabolomics techniques. Therefore, this review summarizes the significance of metabolic and chemical exchanges between coexisting microorganisms to combat the escalating challenges of drought conditions effectively.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"43 ","pages":"Article 100513"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant-microbiome responses under drought stress and their metabolite-mediated interactions towards enhanced crop resilience\",\"authors\":\"Aditya Sharma , Nandita Das , Piyush Pandey , Pratyoosh Shukla\",\"doi\":\"10.1016/j.cpb.2025.100513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The impacts of climate change are felt worldwide; however, drought stress poses significant challenges to global agriculture, affecting crop yields and food security. Understanding the multifaceted responses of crop plants to drought, particularly through their interaction with microbiomes and metabolites, is crucial and urgent for developing resilient agricultural systems. This review highlights the detrimental effects of drought on crop plants, including reduced water use efficiency, the production of free radicals, impaired plant growth and yield, and alterations in the photosynthetic apparatus. Additionally, this review addresses the research progress on plant responses, microbiome assemblages, metabolomic responses, and interactions under drought stress. By integrating findings from metabolomics, we discuss the “call for help” signal via root exudates in crop plants and their microbiomes during drought stress. Key aspects include the reciprocal exchange of metabolites (oxaloacetic acid, flavonoids, triterpenoids, phytoalexin, coumarin, and pyruvic acid), osmoprotectants (proline, sugars, amino acids), antioxidant enzymes (peroxidase, catalase, superoxide dismutase), and phytohormones (salicylic acid, jasmonic acid, and abscisic acid), along with the activation of stress-responsive pathways. Here, we explain the forefront of deciphering plant-microbiome interactions using cutting-edge metabolomics techniques. Therefore, this review summarizes the significance of metabolic and chemical exchanges between coexisting microorganisms to combat the escalating challenges of drought conditions effectively.</div></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":\"43 \",\"pages\":\"Article 100513\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214662825000817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825000817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Plant-microbiome responses under drought stress and their metabolite-mediated interactions towards enhanced crop resilience
The impacts of climate change are felt worldwide; however, drought stress poses significant challenges to global agriculture, affecting crop yields and food security. Understanding the multifaceted responses of crop plants to drought, particularly through their interaction with microbiomes and metabolites, is crucial and urgent for developing resilient agricultural systems. This review highlights the detrimental effects of drought on crop plants, including reduced water use efficiency, the production of free radicals, impaired plant growth and yield, and alterations in the photosynthetic apparatus. Additionally, this review addresses the research progress on plant responses, microbiome assemblages, metabolomic responses, and interactions under drought stress. By integrating findings from metabolomics, we discuss the “call for help” signal via root exudates in crop plants and their microbiomes during drought stress. Key aspects include the reciprocal exchange of metabolites (oxaloacetic acid, flavonoids, triterpenoids, phytoalexin, coumarin, and pyruvic acid), osmoprotectants (proline, sugars, amino acids), antioxidant enzymes (peroxidase, catalase, superoxide dismutase), and phytohormones (salicylic acid, jasmonic acid, and abscisic acid), along with the activation of stress-responsive pathways. Here, we explain the forefront of deciphering plant-microbiome interactions using cutting-edge metabolomics techniques. Therefore, this review summarizes the significance of metabolic and chemical exchanges between coexisting microorganisms to combat the escalating challenges of drought conditions effectively.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.