衰减BaCo0.4Fe0.4Zr0.1Y0.1O3-δ中的金属氧键,实现可逆固体氧化物电池的高效双功能氧电极

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Kai Li , Haitao Cheng , Chenxuan Zhao , Lichao Jia
{"title":"衰减BaCo0.4Fe0.4Zr0.1Y0.1O3-δ中的金属氧键,实现可逆固体氧化物电池的高效双功能氧电极","authors":"Kai Li ,&nbsp;Haitao Cheng ,&nbsp;Chenxuan Zhao ,&nbsp;Lichao Jia","doi":"10.1016/j.susmat.2025.e01523","DOIUrl":null,"url":null,"abstract":"<div><div>Proton-conducting reversible solid oxide cells (P-RSOCs) have the potential to enable interconversion between power and green hydrogen at low to intermediate temperatures. However, the large-scale application of P-RSOCs is significantly hindered by inefficient oxygen reduction (ORR) and evolution reaction (OER) kinetics in air electrode at reduced temperatures. Herein, this investigation introduces a straightforward approach of doping 5 % Zn into the BaCo<sub>0.4</sub>Fe<sub>0.4</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> (BCFZY) lattice to form Ba(Co<sub>0.4</sub>Fe<sub>0.4</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>)<sub>0.95</sub>Zn<sub>0.05</sub>O<sub>3-δ</sub> (BCFZYZ) as an exceptional efficiency and durable air electrode for P-RSOC. The introduction of Zn doping is anticipated to weaken the coulombic forces between B-site metallic ions and oxygen ions, thereby increasing the oxygen vacancies and proton defect concentration. Experimental results identify that the incorporation of Zn significantly enhances oxygen vacancies generation and hydration, and facilitates oxygen/proton surface exchange and bulk diffusion rates, thereby accelerating the ORR and OER kinetics. The BCFZYZ electrode exhibits relatively smaller polarization resistance and corresponding reaction activation energy (E<sub>a</sub> = 1.198 ev). The P-RSOCs using BCFZYZ air electrode deliver impressive bifunctional performance at 650 °C, the cell achieves a peak power density of 946 mW cm<sup>−2</sup> in fuel cell operation, and 1175 mA cm<sup>−2</sup> electrolysis current density at 1.3 V in water splitting process. Moreover, the BCFZYZ full cell maintains stable voltage for 120 h and exhibits robust stable reversibility over a 100 h cycling period. This work provides an effective design strategy to facilitate the ORR and OER kinetics of BCFZY for high performance and durable air electrode of P-RSOC.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01523"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attenuating the metal‑oxygen bonds in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ to achieve a high efficiency bifunctional oxygen electrode for reversible solid oxide cells\",\"authors\":\"Kai Li ,&nbsp;Haitao Cheng ,&nbsp;Chenxuan Zhao ,&nbsp;Lichao Jia\",\"doi\":\"10.1016/j.susmat.2025.e01523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proton-conducting reversible solid oxide cells (P-RSOCs) have the potential to enable interconversion between power and green hydrogen at low to intermediate temperatures. However, the large-scale application of P-RSOCs is significantly hindered by inefficient oxygen reduction (ORR) and evolution reaction (OER) kinetics in air electrode at reduced temperatures. Herein, this investigation introduces a straightforward approach of doping 5 % Zn into the BaCo<sub>0.4</sub>Fe<sub>0.4</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> (BCFZY) lattice to form Ba(Co<sub>0.4</sub>Fe<sub>0.4</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>)<sub>0.95</sub>Zn<sub>0.05</sub>O<sub>3-δ</sub> (BCFZYZ) as an exceptional efficiency and durable air electrode for P-RSOC. The introduction of Zn doping is anticipated to weaken the coulombic forces between B-site metallic ions and oxygen ions, thereby increasing the oxygen vacancies and proton defect concentration. Experimental results identify that the incorporation of Zn significantly enhances oxygen vacancies generation and hydration, and facilitates oxygen/proton surface exchange and bulk diffusion rates, thereby accelerating the ORR and OER kinetics. The BCFZYZ electrode exhibits relatively smaller polarization resistance and corresponding reaction activation energy (E<sub>a</sub> = 1.198 ev). The P-RSOCs using BCFZYZ air electrode deliver impressive bifunctional performance at 650 °C, the cell achieves a peak power density of 946 mW cm<sup>−2</sup> in fuel cell operation, and 1175 mA cm<sup>−2</sup> electrolysis current density at 1.3 V in water splitting process. Moreover, the BCFZYZ full cell maintains stable voltage for 120 h and exhibits robust stable reversibility over a 100 h cycling period. This work provides an effective design strategy to facilitate the ORR and OER kinetics of BCFZY for high performance and durable air electrode of P-RSOC.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"45 \",\"pages\":\"Article e01523\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221499372500291X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221499372500291X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

质子传导可逆固体氧化物电池(p - rsoc)具有在低至中温下实现电能和绿色氢之间相互转换的潜力。然而,低温下空气电极中氧还原(ORR)和进化反应(OER)动力学的低效严重阻碍了p - rsoc的大规模应用。本文介绍了一种简单的方法,将5% Zn掺杂到BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY)晶格中,形成Ba(Co0.4Fe0.4Zr0.1Y0.1)0.95 zn0.050 o3 -δ (BCFZYZ),作为P-RSOC的高效耐用空气电极。锌掺杂的引入有望削弱b位金属离子与氧离子之间的库仑力,从而增加氧空位和质子缺陷浓度。实验结果表明,Zn的加入显著增强了氧空位的生成和水合作用,促进了氧/质子的表面交换和体扩散速率,从而加快了ORR和OER动力学。BCFZYZ电极具有较小的极化电阻和相应的反应活化能(Ea = 1.198 ev)。使用BCFZYZ空气电极的p - rsoc在650°C下具有出色的双功能性能,电池在燃料电池工作时的峰值功率密度为946 mW cm - 2,在1.3 V水分解过程中达到1175 mA cm - 2的电解电流密度。此外,BCFZYZ全电池在120小时内保持稳定电压,并在100小时的循环周期内表现出强大的稳定可逆性。本研究为高效耐用的P-RSOC空气电极BCFZY的ORR和OER动力学提供了有效的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attenuating the metal‑oxygen bonds in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ to achieve a high efficiency bifunctional oxygen electrode for reversible solid oxide cells
Proton-conducting reversible solid oxide cells (P-RSOCs) have the potential to enable interconversion between power and green hydrogen at low to intermediate temperatures. However, the large-scale application of P-RSOCs is significantly hindered by inefficient oxygen reduction (ORR) and evolution reaction (OER) kinetics in air electrode at reduced temperatures. Herein, this investigation introduces a straightforward approach of doping 5 % Zn into the BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) lattice to form Ba(Co0.4Fe0.4Zr0.1Y0.1)0.95Zn0.05O3-δ (BCFZYZ) as an exceptional efficiency and durable air electrode for P-RSOC. The introduction of Zn doping is anticipated to weaken the coulombic forces between B-site metallic ions and oxygen ions, thereby increasing the oxygen vacancies and proton defect concentration. Experimental results identify that the incorporation of Zn significantly enhances oxygen vacancies generation and hydration, and facilitates oxygen/proton surface exchange and bulk diffusion rates, thereby accelerating the ORR and OER kinetics. The BCFZYZ electrode exhibits relatively smaller polarization resistance and corresponding reaction activation energy (Ea = 1.198 ev). The P-RSOCs using BCFZYZ air electrode deliver impressive bifunctional performance at 650 °C, the cell achieves a peak power density of 946 mW cm−2 in fuel cell operation, and 1175 mA cm−2 electrolysis current density at 1.3 V in water splitting process. Moreover, the BCFZYZ full cell maintains stable voltage for 120 h and exhibits robust stable reversibility over a 100 h cycling period. This work provides an effective design strategy to facilitate the ORR and OER kinetics of BCFZY for high performance and durable air electrode of P-RSOC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信