通过优化合金成分,在添加剂制造的共晶复合合金中实现增强的强度-延性协同作用

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenqing Yang , Wenjie Lu , Lei Qian , Xu-Sheng Yang
{"title":"通过优化合金成分,在添加剂制造的共晶复合合金中实现增强的强度-延性协同作用","authors":"Wenqing Yang ,&nbsp;Wenjie Lu ,&nbsp;Lei Qian ,&nbsp;Xu-Sheng Yang","doi":"10.1016/j.msea.2025.148789","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing of metallic materials creates structures layer-by-layer through rapid melting and solidification, which can promote refined microstructure and enhanced strength. This study investigates the impact of regulating Co content on microstructural evolution and mechanical properties in eutectic AlCoCrFeNi<sub>2.1</sub> compositionally complex alloy (CCA) fabricated through laser engineered net shaping technique. Our work clearly demonstrates that subtly regulating Co content can significantly manipulate the lamellar spacing and phase volume fraction, resulting in enhanced strength-ductility combination. Notably, compared with the original eutectic AlCoCrFeNi<sub>2.1</sub> CCA with a tensile strength at ∼883 MPa and fracture elongation at ∼11 %, our designed AlCo<sub>1.2</sub>CrFeNi<sub>2.1</sub> CCA with a higher Co content exhibits superior strength-ductility synergy, showing a remarkable tensile strength at ∼1602 MPa and fracture elongation at ∼14 %. This increased Co concentration promotes lamellar refinement and introduces more phase boundaries in the FCC/BCC dual-phase microstructure, which induce strengthening effect through dislocation pile-up at the phase boundaries. Meanwhile, the coherent interfaces between FCC and BCC facilitate dislocation propagation across the phase boundaries and support strain accommodation, ultimately achieving an exceptional strength-ductility balance. Our findings provide valuable insights for further design and rapid development of high-performance additive-manufactured alloys by adjusting the elemental composition.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"943 ","pages":"Article 148789"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving enhanced strength-ductility synergy in an additive manufactured eutectic compositionally complex alloy via optimizing alloy composition\",\"authors\":\"Wenqing Yang ,&nbsp;Wenjie Lu ,&nbsp;Lei Qian ,&nbsp;Xu-Sheng Yang\",\"doi\":\"10.1016/j.msea.2025.148789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive manufacturing of metallic materials creates structures layer-by-layer through rapid melting and solidification, which can promote refined microstructure and enhanced strength. This study investigates the impact of regulating Co content on microstructural evolution and mechanical properties in eutectic AlCoCrFeNi<sub>2.1</sub> compositionally complex alloy (CCA) fabricated through laser engineered net shaping technique. Our work clearly demonstrates that subtly regulating Co content can significantly manipulate the lamellar spacing and phase volume fraction, resulting in enhanced strength-ductility combination. Notably, compared with the original eutectic AlCoCrFeNi<sub>2.1</sub> CCA with a tensile strength at ∼883 MPa and fracture elongation at ∼11 %, our designed AlCo<sub>1.2</sub>CrFeNi<sub>2.1</sub> CCA with a higher Co content exhibits superior strength-ductility synergy, showing a remarkable tensile strength at ∼1602 MPa and fracture elongation at ∼14 %. This increased Co concentration promotes lamellar refinement and introduces more phase boundaries in the FCC/BCC dual-phase microstructure, which induce strengthening effect through dislocation pile-up at the phase boundaries. Meanwhile, the coherent interfaces between FCC and BCC facilitate dislocation propagation across the phase boundaries and support strain accommodation, ultimately achieving an exceptional strength-ductility balance. Our findings provide valuable insights for further design and rapid development of high-performance additive-manufactured alloys by adjusting the elemental composition.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"943 \",\"pages\":\"Article 148789\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325010135\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325010135","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属材料的增材制造通过快速熔化和凝固,逐层形成结构,可以促进微观组织的细化和强度的提高。本文研究了Co含量的调节对激光工程净成形法制备的cocrfeni2.1复合合金(CCA)显微组织演变和力学性能的影响。我们的工作清楚地表明,微妙地调节Co含量可以显着控制片层间距和相体积分数,从而提高强度-塑性组合。值得注意的是,与抗拉强度为~ 883 MPa、断裂伸长率为~ 11%的原始共晶AlCoCrFeNi2.1 CCA相比,我们设计的Co含量较高的AlCo1.2CrFeNi2.1 CCA具有更好的强度-塑性协同作用,抗拉强度为~ 1602 MPa,断裂伸长率为~ 14%。Co浓度的增加促进了FCC/BCC双相组织的层状细化,并引入了更多的相边界,从而通过相边界处的位错堆积产生强化效应。同时,FCC和BCC之间的共格界面促进了位错跨越相界的扩展,支持应变调节,最终实现了优异的强度-塑性平衡。我们的研究结果为通过调整元素组成进一步设计和快速开发高性能增材制造合金提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achieving enhanced strength-ductility synergy in an additive manufactured eutectic compositionally complex alloy via optimizing alloy composition
Additive manufacturing of metallic materials creates structures layer-by-layer through rapid melting and solidification, which can promote refined microstructure and enhanced strength. This study investigates the impact of regulating Co content on microstructural evolution and mechanical properties in eutectic AlCoCrFeNi2.1 compositionally complex alloy (CCA) fabricated through laser engineered net shaping technique. Our work clearly demonstrates that subtly regulating Co content can significantly manipulate the lamellar spacing and phase volume fraction, resulting in enhanced strength-ductility combination. Notably, compared with the original eutectic AlCoCrFeNi2.1 CCA with a tensile strength at ∼883 MPa and fracture elongation at ∼11 %, our designed AlCo1.2CrFeNi2.1 CCA with a higher Co content exhibits superior strength-ductility synergy, showing a remarkable tensile strength at ∼1602 MPa and fracture elongation at ∼14 %. This increased Co concentration promotes lamellar refinement and introduces more phase boundaries in the FCC/BCC dual-phase microstructure, which induce strengthening effect through dislocation pile-up at the phase boundaries. Meanwhile, the coherent interfaces between FCC and BCC facilitate dislocation propagation across the phase boundaries and support strain accommodation, ultimately achieving an exceptional strength-ductility balance. Our findings provide valuable insights for further design and rapid development of high-performance additive-manufactured alloys by adjusting the elemental composition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信