基于量子神经网络的六关节工业机械臂运动学逆解

IF 5.2 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Mehdi Fazilat, Nadjet Zioui
{"title":"基于量子神经网络的六关节工业机械臂运动学逆解","authors":"Mehdi Fazilat,&nbsp;Nadjet Zioui","doi":"10.1016/j.robot.2025.105123","DOIUrl":null,"url":null,"abstract":"<div><div>This research examines the potential of quantum-inspired neural networks (QNNs) for solving the inverse kinematics of robotic arms, focusing on the six-degree-of-freedom ABB IRB140 robot. Traditional inverse kinematics approaches face challenges such as non-unique solutions and computational complexity, especially with increasing degrees of freedom. While artificial neural networks (ANNs) have shown promise, they require further improvements, particularly in terms of quantum computing integration. This study introduces a quantum-inspired activation function to multi-layer perceptron neural networks. We compared ANNs and QNNs with and without singularity avoidance, finding that QNNs significantly outperformed ANNs in mean absolute error (MAE), achieving a 15.60 % lower MAE in singularity-free models and a 16.67 % lower MAE in singularity-avoidance models. The QNNs demonstrated superior precision, with a position error of 1.64 mm and an orientation error of 0.00179 radians when avoiding singularities. These results highlight the potential of QNNs to enhance the precision, efficiency, and performance of robotic arm manipulation. Quantum computing offers advantages including parallelism, quantum entanglement, and quantum annealing, which contribute to the QNNs’ superior performance. Overall, this study represents a practical contribution to robotics and quantum computing, paving the way for future research into applying quantum principles to neural network models for robotics.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"194 ","pages":"Article 105123"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum neural network-based inverse kinematics of a six-jointed industrial robotic arm\",\"authors\":\"Mehdi Fazilat,&nbsp;Nadjet Zioui\",\"doi\":\"10.1016/j.robot.2025.105123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research examines the potential of quantum-inspired neural networks (QNNs) for solving the inverse kinematics of robotic arms, focusing on the six-degree-of-freedom ABB IRB140 robot. Traditional inverse kinematics approaches face challenges such as non-unique solutions and computational complexity, especially with increasing degrees of freedom. While artificial neural networks (ANNs) have shown promise, they require further improvements, particularly in terms of quantum computing integration. This study introduces a quantum-inspired activation function to multi-layer perceptron neural networks. We compared ANNs and QNNs with and without singularity avoidance, finding that QNNs significantly outperformed ANNs in mean absolute error (MAE), achieving a 15.60 % lower MAE in singularity-free models and a 16.67 % lower MAE in singularity-avoidance models. The QNNs demonstrated superior precision, with a position error of 1.64 mm and an orientation error of 0.00179 radians when avoiding singularities. These results highlight the potential of QNNs to enhance the precision, efficiency, and performance of robotic arm manipulation. Quantum computing offers advantages including parallelism, quantum entanglement, and quantum annealing, which contribute to the QNNs’ superior performance. Overall, this study represents a practical contribution to robotics and quantum computing, paving the way for future research into applying quantum principles to neural network models for robotics.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"194 \",\"pages\":\"Article 105123\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889025002209\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025002209","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了量子启发神经网络(QNNs)解决机械臂逆运动学的潜力,重点是六自由度ABB IRB140机器人。传统的逆运动学方法面临着非唯一解和计算复杂性等挑战,特别是随着自由度的增加。虽然人工神经网络(ann)已经显示出前景,但它们需要进一步改进,特别是在量子计算集成方面。本研究将量子启发的激活函数引入多层感知器神经网络。我们比较了有和没有避免奇点的人工神经网络和qnn,发现qnn在平均绝对误差(MAE)上明显优于人工神经网络,在无奇点模型中MAE降低了15.60%,在避免奇点模型中MAE降低了16.67%。在避免奇异点的情况下,qnn的位置误差为1.64 mm,方向误差为0.00179弧度。这些结果突出了qnn在提高机械臂操作精度、效率和性能方面的潜力。量子计算提供了并行性、量子纠缠和量子退火等优势,这有助于量子神经网络的卓越性能。总的来说,这项研究代表了对机器人和量子计算的实际贡献,为未来将量子原理应用于机器人神经网络模型的研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum neural network-based inverse kinematics of a six-jointed industrial robotic arm
This research examines the potential of quantum-inspired neural networks (QNNs) for solving the inverse kinematics of robotic arms, focusing on the six-degree-of-freedom ABB IRB140 robot. Traditional inverse kinematics approaches face challenges such as non-unique solutions and computational complexity, especially with increasing degrees of freedom. While artificial neural networks (ANNs) have shown promise, they require further improvements, particularly in terms of quantum computing integration. This study introduces a quantum-inspired activation function to multi-layer perceptron neural networks. We compared ANNs and QNNs with and without singularity avoidance, finding that QNNs significantly outperformed ANNs in mean absolute error (MAE), achieving a 15.60 % lower MAE in singularity-free models and a 16.67 % lower MAE in singularity-avoidance models. The QNNs demonstrated superior precision, with a position error of 1.64 mm and an orientation error of 0.00179 radians when avoiding singularities. These results highlight the potential of QNNs to enhance the precision, efficiency, and performance of robotic arm manipulation. Quantum computing offers advantages including parallelism, quantum entanglement, and quantum annealing, which contribute to the QNNs’ superior performance. Overall, this study represents a practical contribution to robotics and quantum computing, paving the way for future research into applying quantum principles to neural network models for robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信