Chongwei Fan , Guiyao Zhou , Hongyang Chen , Zhenggang Du , Ruiqiang Liu , Yanghui He , Changjiang Huang , Shuying Qiu , Yimin Zhu , Jie Li , Xuhui Zhou
{"title":"间伐强度影响森林生态系统C:N:P化学计量学:全球综合","authors":"Chongwei Fan , Guiyao Zhou , Hongyang Chen , Zhenggang Du , Ruiqiang Liu , Yanghui He , Changjiang Huang , Shuying Qiu , Yimin Zhu , Jie Li , Xuhui Zhou","doi":"10.1016/j.geoderma.2025.117435","DOIUrl":null,"url":null,"abstract":"<div><div>Forest thinning potentially alters carbon (C), nitrogen (N), and phosphorus (P) cycles, thereby affecting their C:N:P stoichiometry as well as the key ecosystem services they support. Despite the fact that numerous individual studies and a few meta-analyses have been conducted to examine thinning effects on ecosystem C and N cycles, how forest thinning, especially its intensity, affects the C:N:P stoichiometry of plants, soil, and microbes remains poorly known. Here, we carried out a global meta-analysis of 779 paired observations from 136 peer-reviewed articles to assess effects of forest thinning on C:N:P stoichiometry of plants, soil, and microbes in global forests. Our results showed that, on average, forest thinning significantly increased soil C and P pools by 5.0% and 11.1%, and microbial biomass C, N, and, P pools by 9.3%, 12.0%, and 38.4%, respectively. In contrast, forest thinning decreased plant P pool, soil C:P and N:P ratios, and microbial C:N and N:P ratios. More importantly, the effects of forest thinning on C:N:P stoichiometry largely varied with forest thinning intensity. Specifically, heavy thinning significantly decreased plant C:N ratios and soil N:P ratios, whereas light and moderate thinning had positive or insignificant effects on C:N:P stoichiometry. Thinning-induced changes in the C:N, C:P, and N:P ratios were positively correlated with mean annual temperature (MAT) and mean annual precipitation (MAP), but negatively with post-thinning duration and stand age. These findings highlight the impact of thinning intensity on the connection between above- and belowground processes, which may decouple the biogeochemical cycles of C, N, and P in forest ecosystems. Future forest management could implement an appropriate forest thinning intensity to ensure ecosystem functionality and maintain the balance and stability of ecosystem elements.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"460 ","pages":"Article 117435"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thinning intensity influences the C:N:P stoichiometry in forest ecosystems: A global synthesis\",\"authors\":\"Chongwei Fan , Guiyao Zhou , Hongyang Chen , Zhenggang Du , Ruiqiang Liu , Yanghui He , Changjiang Huang , Shuying Qiu , Yimin Zhu , Jie Li , Xuhui Zhou\",\"doi\":\"10.1016/j.geoderma.2025.117435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forest thinning potentially alters carbon (C), nitrogen (N), and phosphorus (P) cycles, thereby affecting their C:N:P stoichiometry as well as the key ecosystem services they support. Despite the fact that numerous individual studies and a few meta-analyses have been conducted to examine thinning effects on ecosystem C and N cycles, how forest thinning, especially its intensity, affects the C:N:P stoichiometry of plants, soil, and microbes remains poorly known. Here, we carried out a global meta-analysis of 779 paired observations from 136 peer-reviewed articles to assess effects of forest thinning on C:N:P stoichiometry of plants, soil, and microbes in global forests. Our results showed that, on average, forest thinning significantly increased soil C and P pools by 5.0% and 11.1%, and microbial biomass C, N, and, P pools by 9.3%, 12.0%, and 38.4%, respectively. In contrast, forest thinning decreased plant P pool, soil C:P and N:P ratios, and microbial C:N and N:P ratios. More importantly, the effects of forest thinning on C:N:P stoichiometry largely varied with forest thinning intensity. Specifically, heavy thinning significantly decreased plant C:N ratios and soil N:P ratios, whereas light and moderate thinning had positive or insignificant effects on C:N:P stoichiometry. Thinning-induced changes in the C:N, C:P, and N:P ratios were positively correlated with mean annual temperature (MAT) and mean annual precipitation (MAP), but negatively with post-thinning duration and stand age. These findings highlight the impact of thinning intensity on the connection between above- and belowground processes, which may decouple the biogeochemical cycles of C, N, and P in forest ecosystems. Future forest management could implement an appropriate forest thinning intensity to ensure ecosystem functionality and maintain the balance and stability of ecosystem elements.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"460 \",\"pages\":\"Article 117435\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706125002769\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125002769","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Thinning intensity influences the C:N:P stoichiometry in forest ecosystems: A global synthesis
Forest thinning potentially alters carbon (C), nitrogen (N), and phosphorus (P) cycles, thereby affecting their C:N:P stoichiometry as well as the key ecosystem services they support. Despite the fact that numerous individual studies and a few meta-analyses have been conducted to examine thinning effects on ecosystem C and N cycles, how forest thinning, especially its intensity, affects the C:N:P stoichiometry of plants, soil, and microbes remains poorly known. Here, we carried out a global meta-analysis of 779 paired observations from 136 peer-reviewed articles to assess effects of forest thinning on C:N:P stoichiometry of plants, soil, and microbes in global forests. Our results showed that, on average, forest thinning significantly increased soil C and P pools by 5.0% and 11.1%, and microbial biomass C, N, and, P pools by 9.3%, 12.0%, and 38.4%, respectively. In contrast, forest thinning decreased plant P pool, soil C:P and N:P ratios, and microbial C:N and N:P ratios. More importantly, the effects of forest thinning on C:N:P stoichiometry largely varied with forest thinning intensity. Specifically, heavy thinning significantly decreased plant C:N ratios and soil N:P ratios, whereas light and moderate thinning had positive or insignificant effects on C:N:P stoichiometry. Thinning-induced changes in the C:N, C:P, and N:P ratios were positively correlated with mean annual temperature (MAT) and mean annual precipitation (MAP), but negatively with post-thinning duration and stand age. These findings highlight the impact of thinning intensity on the connection between above- and belowground processes, which may decouple the biogeochemical cycles of C, N, and P in forest ecosystems. Future forest management could implement an appropriate forest thinning intensity to ensure ecosystem functionality and maintain the balance and stability of ecosystem elements.
期刊介绍:
Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.