Zhenlin Jiang , Jizhe Liu , Wanyu Xie , Yi Song , Ning Liu , Jiaguo Li , Baoxiu Wang , Jiapeng Chen , Shiqiang Song , Peng Ji
{"title":"降解-重建-功能增强耦合再生PET成P-N协同阻燃的再生热塑性聚氨酯","authors":"Zhenlin Jiang , Jizhe Liu , Wanyu Xie , Yi Song , Ning Liu , Jiaguo Li , Baoxiu Wang , Jiapeng Chen , Shiqiang Song , Peng Ji","doi":"10.1016/j.polymdegradstab.2025.111537","DOIUrl":null,"url":null,"abstract":"<div><div>Functional regeneration of waste plastics is a pivotal strategy for sustainable development. This study has developed a method for functional and collaborative upgrading recycling of waste PET. By using chemical alcoholysis and copolymerization techniques, the waste PET is chemically modified into flame-retardant polyester polyols (rFR POL). It is then used as functional soft segments to polymerize, resulting in the synthesis of recycled high transparency, weather-resistant, and flame-retardant thermoplastic polyurethane (rFR TPU). Research shows using rFR POL as a soft segment cuts petroleum-based material use by 57 % in TPU production. And this enhances the transparency, hydrolysis resistance and flame retardancy of TPU films. After 14 days of hydrolysis and thermal weight loss tests, it was found that the molecular weight of rFR50 % TPU remains almost unchanged, with a high T<sub>5wt %</sub> (225 °C). For rFR100 % TPU, the phosphorus content increases to 19,680 ppm, the LOI reaches 35.30 %, and the vertical burning is rated V-0. The flame retardancy mechanism is attributed to the synergistic gas phase and condensed phase flame retardant effects of P-N. The total GWP of this process is 2800 kg CO<sub>2</sub> equivalent, and the total cost is $1342 per ton, which is 37.8 % and 42 % lower than traditional petroleum-based TPU production, respectively. This process reduces polyester fire risks, fundamentally solves functional chain migration and excessive modifier issues. It also achieves upgraded recycling of non-biodegradable polyester, providing an innovative solution for green flame-retardant polymer development.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"241 ","pages":"Article 111537"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation-reconstruction-functional enhancement coupled upcycling of waste PET into recycled thermoplastic polyurethane with P-N synergistic flame retardancy\",\"authors\":\"Zhenlin Jiang , Jizhe Liu , Wanyu Xie , Yi Song , Ning Liu , Jiaguo Li , Baoxiu Wang , Jiapeng Chen , Shiqiang Song , Peng Ji\",\"doi\":\"10.1016/j.polymdegradstab.2025.111537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Functional regeneration of waste plastics is a pivotal strategy for sustainable development. This study has developed a method for functional and collaborative upgrading recycling of waste PET. By using chemical alcoholysis and copolymerization techniques, the waste PET is chemically modified into flame-retardant polyester polyols (rFR POL). It is then used as functional soft segments to polymerize, resulting in the synthesis of recycled high transparency, weather-resistant, and flame-retardant thermoplastic polyurethane (rFR TPU). Research shows using rFR POL as a soft segment cuts petroleum-based material use by 57 % in TPU production. And this enhances the transparency, hydrolysis resistance and flame retardancy of TPU films. After 14 days of hydrolysis and thermal weight loss tests, it was found that the molecular weight of rFR50 % TPU remains almost unchanged, with a high T<sub>5wt %</sub> (225 °C). For rFR100 % TPU, the phosphorus content increases to 19,680 ppm, the LOI reaches 35.30 %, and the vertical burning is rated V-0. The flame retardancy mechanism is attributed to the synergistic gas phase and condensed phase flame retardant effects of P-N. The total GWP of this process is 2800 kg CO<sub>2</sub> equivalent, and the total cost is $1342 per ton, which is 37.8 % and 42 % lower than traditional petroleum-based TPU production, respectively. This process reduces polyester fire risks, fundamentally solves functional chain migration and excessive modifier issues. It also achieves upgraded recycling of non-biodegradable polyester, providing an innovative solution for green flame-retardant polymer development.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"241 \",\"pages\":\"Article 111537\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391025003660\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025003660","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Degradation-reconstruction-functional enhancement coupled upcycling of waste PET into recycled thermoplastic polyurethane with P-N synergistic flame retardancy
Functional regeneration of waste plastics is a pivotal strategy for sustainable development. This study has developed a method for functional and collaborative upgrading recycling of waste PET. By using chemical alcoholysis and copolymerization techniques, the waste PET is chemically modified into flame-retardant polyester polyols (rFR POL). It is then used as functional soft segments to polymerize, resulting in the synthesis of recycled high transparency, weather-resistant, and flame-retardant thermoplastic polyurethane (rFR TPU). Research shows using rFR POL as a soft segment cuts petroleum-based material use by 57 % in TPU production. And this enhances the transparency, hydrolysis resistance and flame retardancy of TPU films. After 14 days of hydrolysis and thermal weight loss tests, it was found that the molecular weight of rFR50 % TPU remains almost unchanged, with a high T5wt % (225 °C). For rFR100 % TPU, the phosphorus content increases to 19,680 ppm, the LOI reaches 35.30 %, and the vertical burning is rated V-0. The flame retardancy mechanism is attributed to the synergistic gas phase and condensed phase flame retardant effects of P-N. The total GWP of this process is 2800 kg CO2 equivalent, and the total cost is $1342 per ton, which is 37.8 % and 42 % lower than traditional petroleum-based TPU production, respectively. This process reduces polyester fire risks, fundamentally solves functional chain migration and excessive modifier issues. It also achieves upgraded recycling of non-biodegradable polyester, providing an innovative solution for green flame-retardant polymer development.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.