{"title":"25-羟基胆固醇在炎症中的作用","authors":"Romeo Carre, Solenne Vigne, Caroline Pot","doi":"10.1016/j.coemr.2025.100582","DOIUrl":null,"url":null,"abstract":"<div><div>Oxysterols, biological active oxidized forms of cholesterol, regulate cholesterol metabolism and intracellular cholesterol levels. They have been attributed additional roles during inflammation and recent data have highlighted their implication in human diseases. The oxysterol downstream of cholesterol 25-hydroxylase (Ch25h), 25-Hydroxycholesterol (25-HC), is largely produced during inflammatory processes. 25-HC and its derived oxysterols play critical roles in immune cell chemotaxis, viral replication inhibition, and neuroinflammation. Mechanistically, mitochondrial function, inflammasomes, endoplasmic reticulum stress, cell death, and cellular metabolism are involved. This review aims to bring the latest knowledge about the role of Ch25h-derived oxysterols under inflammatory conditions related to human diseases, specifically autoimmunity, neurological disorders, and cancers.</div></div>","PeriodicalId":52218,"journal":{"name":"Current Opinion in Endocrine and Metabolic Research","volume":"40 ","pages":"Article 100582"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"25-hydroxycholesterol in inflammation\",\"authors\":\"Romeo Carre, Solenne Vigne, Caroline Pot\",\"doi\":\"10.1016/j.coemr.2025.100582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oxysterols, biological active oxidized forms of cholesterol, regulate cholesterol metabolism and intracellular cholesterol levels. They have been attributed additional roles during inflammation and recent data have highlighted their implication in human diseases. The oxysterol downstream of cholesterol 25-hydroxylase (Ch25h), 25-Hydroxycholesterol (25-HC), is largely produced during inflammatory processes. 25-HC and its derived oxysterols play critical roles in immune cell chemotaxis, viral replication inhibition, and neuroinflammation. Mechanistically, mitochondrial function, inflammasomes, endoplasmic reticulum stress, cell death, and cellular metabolism are involved. This review aims to bring the latest knowledge about the role of Ch25h-derived oxysterols under inflammatory conditions related to human diseases, specifically autoimmunity, neurological disorders, and cancers.</div></div>\",\"PeriodicalId\":52218,\"journal\":{\"name\":\"Current Opinion in Endocrine and Metabolic Research\",\"volume\":\"40 \",\"pages\":\"Article 100582\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Endocrine and Metabolic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451965025000134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Endocrine and Metabolic Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451965025000134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oxysterols, biological active oxidized forms of cholesterol, regulate cholesterol metabolism and intracellular cholesterol levels. They have been attributed additional roles during inflammation and recent data have highlighted their implication in human diseases. The oxysterol downstream of cholesterol 25-hydroxylase (Ch25h), 25-Hydroxycholesterol (25-HC), is largely produced during inflammatory processes. 25-HC and its derived oxysterols play critical roles in immune cell chemotaxis, viral replication inhibition, and neuroinflammation. Mechanistically, mitochondrial function, inflammasomes, endoplasmic reticulum stress, cell death, and cellular metabolism are involved. This review aims to bring the latest knowledge about the role of Ch25h-derived oxysterols under inflammatory conditions related to human diseases, specifically autoimmunity, neurological disorders, and cancers.