{"title":"天然和合成膦酸盐疗法的最新进展","authors":"Jerry Cui , Kou-San Ju","doi":"10.1016/j.mib.2025.102630","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphonate and phosphinate compounds — both natural and synthetic — have given rise to major families of therapeutics and agricultural agents. The antibiotic fosfomycin, the antivirals foscarnet and tenofovir, the bisphosphonates, and the herbicides phosphinothricin and glyphosate all belong to this compound class. The carbon–phosphorus bonds that define these molecules enable chemical mimicry of essential phosphate ester and carboxylate metabolites within metabolism, which is the foundation for their bioactivity. Here, we review examples of C-P compounds in drug discovery. In the first half, we highlight the ongoing development of two phosphonate natural products, both of which were initially discovered as antibiotics: fosmidomycin, which has undergone clinical trials as an antimalarial, and SF-2312, derivatives of which are currently being explored as chemotherapeutics. In the second half, we summarize how the C-P moiety has inspired chemical synthesis of new antimicrobials, immunomodulators, and targeted protein degradation agents.</div></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"87 ","pages":"Article 102630"},"PeriodicalIF":5.9000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in natural and synthetic phosphonate therapeutics\",\"authors\":\"Jerry Cui , Kou-San Ju\",\"doi\":\"10.1016/j.mib.2025.102630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phosphonate and phosphinate compounds — both natural and synthetic — have given rise to major families of therapeutics and agricultural agents. The antibiotic fosfomycin, the antivirals foscarnet and tenofovir, the bisphosphonates, and the herbicides phosphinothricin and glyphosate all belong to this compound class. The carbon–phosphorus bonds that define these molecules enable chemical mimicry of essential phosphate ester and carboxylate metabolites within metabolism, which is the foundation for their bioactivity. Here, we review examples of C-P compounds in drug discovery. In the first half, we highlight the ongoing development of two phosphonate natural products, both of which were initially discovered as antibiotics: fosmidomycin, which has undergone clinical trials as an antimalarial, and SF-2312, derivatives of which are currently being explored as chemotherapeutics. In the second half, we summarize how the C-P moiety has inspired chemical synthesis of new antimicrobials, immunomodulators, and targeted protein degradation agents.</div></div>\",\"PeriodicalId\":10921,\"journal\":{\"name\":\"Current opinion in microbiology\",\"volume\":\"87 \",\"pages\":\"Article 102630\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369527425000529\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527425000529","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Recent advances in natural and synthetic phosphonate therapeutics
Phosphonate and phosphinate compounds — both natural and synthetic — have given rise to major families of therapeutics and agricultural agents. The antibiotic fosfomycin, the antivirals foscarnet and tenofovir, the bisphosphonates, and the herbicides phosphinothricin and glyphosate all belong to this compound class. The carbon–phosphorus bonds that define these molecules enable chemical mimicry of essential phosphate ester and carboxylate metabolites within metabolism, which is the foundation for their bioactivity. Here, we review examples of C-P compounds in drug discovery. In the first half, we highlight the ongoing development of two phosphonate natural products, both of which were initially discovered as antibiotics: fosmidomycin, which has undergone clinical trials as an antimalarial, and SF-2312, derivatives of which are currently being explored as chemotherapeutics. In the second half, we summarize how the C-P moiety has inspired chemical synthesis of new antimicrobials, immunomodulators, and targeted protein degradation agents.
期刊介绍:
Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year:
Host-microbe interactions: bacteria
Cell regulation
Environmental microbiology
Host-microbe interactions: fungi/parasites/viruses
Antimicrobials
Microbial systems biology
Growth and development: eukaryotes/prokaryotes