Xinyan Liu , Jiaqi Han , Xiating Zhang , Boxuan Wei , Lu Xu , Qilin Zhou , Yuping Wang , Yicong Lin , Jicong Zhang
{"title":"CTV-MIND:皮质厚度-体积整合的个体化形态学网络模型探讨颞叶癫痫的疾病进展","authors":"Xinyan Liu , Jiaqi Han , Xiating Zhang , Boxuan Wei , Lu Xu , Qilin Zhou , Yuping Wang , Yicong Lin , Jicong Zhang","doi":"10.1016/j.nicl.2025.103843","DOIUrl":null,"url":null,"abstract":"<div><div>Temporal lobe epilepsy (TLE) is a progressive brain network disorder. Elucidating network reorganization and identifying disease progression-associated biomarkers are crucial for understanding pathological mechanisms, quantifying disease burden, and optimizing clinical strategies. This study aimed to investigate progressive changes in TLE by constructing a novel individualized morphological brain network based on T1-weighted structural magnetic resonance imaging (MRI). MRI data were collected from 34 postoperative seizure-free TLE patients and 28 age- and sex-matched healthy controls (HC), with patients divided into LONG-TERM and SHORT-TERM groups. Individualized morphological networks were constructed using the Morphometric INverse Divergence (MIND) framework by integrating cortical thickness and volume features (CTV-MIND). Network properties were then calculated and compared across groups to identify features potentially associated with disease progression. Results revealed progressive hub-node reorganization in CTV-MIND networks, with the LONG-TERM group showing increased connectivity in the lesion-side temporal lobe compared to SHORT-TERM and HC groups. The altered network node properties showed a significant correlation with local cortical atrophy. Incorporating identified network features into a machine learning-based brain age prediction model further revealed significantly elevated brain age in TLE. Notably, duration-related brain regions exerted a more significant and specific impact on premature brain aging in TLE than other regional combinations. Thus, prolonged duration may serve as an important contributor to the pathological aging observed in TLE. Our findings could help clinicians better identify abnormal brain trajectories in TLE and have the potential to facilitate the optimization of personalized treatment strategies.</div></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"48 ","pages":"Article 103843"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CTV-MIND: A cortical thickness-volume integrated individualized morphological network model to explore disease progression in temporal lobe epilepsy\",\"authors\":\"Xinyan Liu , Jiaqi Han , Xiating Zhang , Boxuan Wei , Lu Xu , Qilin Zhou , Yuping Wang , Yicong Lin , Jicong Zhang\",\"doi\":\"10.1016/j.nicl.2025.103843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Temporal lobe epilepsy (TLE) is a progressive brain network disorder. Elucidating network reorganization and identifying disease progression-associated biomarkers are crucial for understanding pathological mechanisms, quantifying disease burden, and optimizing clinical strategies. This study aimed to investigate progressive changes in TLE by constructing a novel individualized morphological brain network based on T1-weighted structural magnetic resonance imaging (MRI). MRI data were collected from 34 postoperative seizure-free TLE patients and 28 age- and sex-matched healthy controls (HC), with patients divided into LONG-TERM and SHORT-TERM groups. Individualized morphological networks were constructed using the Morphometric INverse Divergence (MIND) framework by integrating cortical thickness and volume features (CTV-MIND). Network properties were then calculated and compared across groups to identify features potentially associated with disease progression. Results revealed progressive hub-node reorganization in CTV-MIND networks, with the LONG-TERM group showing increased connectivity in the lesion-side temporal lobe compared to SHORT-TERM and HC groups. The altered network node properties showed a significant correlation with local cortical atrophy. Incorporating identified network features into a machine learning-based brain age prediction model further revealed significantly elevated brain age in TLE. Notably, duration-related brain regions exerted a more significant and specific impact on premature brain aging in TLE than other regional combinations. Thus, prolonged duration may serve as an important contributor to the pathological aging observed in TLE. Our findings could help clinicians better identify abnormal brain trajectories in TLE and have the potential to facilitate the optimization of personalized treatment strategies.</div></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":\"48 \",\"pages\":\"Article 103843\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213158225001135\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158225001135","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
CTV-MIND: A cortical thickness-volume integrated individualized morphological network model to explore disease progression in temporal lobe epilepsy
Temporal lobe epilepsy (TLE) is a progressive brain network disorder. Elucidating network reorganization and identifying disease progression-associated biomarkers are crucial for understanding pathological mechanisms, quantifying disease burden, and optimizing clinical strategies. This study aimed to investigate progressive changes in TLE by constructing a novel individualized morphological brain network based on T1-weighted structural magnetic resonance imaging (MRI). MRI data were collected from 34 postoperative seizure-free TLE patients and 28 age- and sex-matched healthy controls (HC), with patients divided into LONG-TERM and SHORT-TERM groups. Individualized morphological networks were constructed using the Morphometric INverse Divergence (MIND) framework by integrating cortical thickness and volume features (CTV-MIND). Network properties were then calculated and compared across groups to identify features potentially associated with disease progression. Results revealed progressive hub-node reorganization in CTV-MIND networks, with the LONG-TERM group showing increased connectivity in the lesion-side temporal lobe compared to SHORT-TERM and HC groups. The altered network node properties showed a significant correlation with local cortical atrophy. Incorporating identified network features into a machine learning-based brain age prediction model further revealed significantly elevated brain age in TLE. Notably, duration-related brain regions exerted a more significant and specific impact on premature brain aging in TLE than other regional combinations. Thus, prolonged duration may serve as an important contributor to the pathological aging observed in TLE. Our findings could help clinicians better identify abnormal brain trajectories in TLE and have the potential to facilitate the optimization of personalized treatment strategies.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.