Ruanhong Cai, Oliver J. Lechtenfeld, Zhenwei Yan, Yuanbi Yi, Xiaoxia Chen, Qiang Zheng, Boris P. Koch, Nianzhi Jiao, Ding He
{"title":"抑制海洋中富含羧基脂环分子的生物抗逆性","authors":"Ruanhong Cai, Oliver J. Lechtenfeld, Zhenwei Yan, Yuanbi Yi, Xiaoxia Chen, Qiang Zheng, Boris P. Koch, Nianzhi Jiao, Ding He","doi":"10.1126/sciadv.adw1148","DOIUrl":null,"url":null,"abstract":"<div >Marine dissolved organic matter (DOM) is one of Earth’s largest long-term carbon reservoirs, critical to the global carbon cycle. A key breakthrough in understanding this pool is the identification of biorefractory carboxyl-rich alicyclic molecules (CRAM). Recent studies have challenged the biorecalcitrance of CRAM but lacked detailed molecular evidence. Using advanced online countergradient liquid chromatography–Fourier transform ion cyclotron resonance mass spectrometry to track microbial incubation, we revealed a wide spectrum of CRAM bioavailability regulated by molecular polarity. CRAM with lower polarity were preferentially degraded, whereas microbial reworking led to production of higher-polarity CRAM, characterized by increased oxidation state, nitrogen content, and aromaticity. Some microbially transformed CRAM were frequently detected in a global DOM dataset of 1485 seawater samples, suggesting their potential persistence in marine environments. This study provides molecular insights into the biorecalcitrance and transformation pathway of CRAM, underscoring the complexity and dynamic nature of marine organic carbon cycling.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 28","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw1148","citationCount":"0","resultStr":"{\"title\":\"Constraining biorecalcitrance of carboxyl-rich alicyclic molecules in the ocean\",\"authors\":\"Ruanhong Cai, Oliver J. Lechtenfeld, Zhenwei Yan, Yuanbi Yi, Xiaoxia Chen, Qiang Zheng, Boris P. Koch, Nianzhi Jiao, Ding He\",\"doi\":\"10.1126/sciadv.adw1148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Marine dissolved organic matter (DOM) is one of Earth’s largest long-term carbon reservoirs, critical to the global carbon cycle. A key breakthrough in understanding this pool is the identification of biorefractory carboxyl-rich alicyclic molecules (CRAM). Recent studies have challenged the biorecalcitrance of CRAM but lacked detailed molecular evidence. Using advanced online countergradient liquid chromatography–Fourier transform ion cyclotron resonance mass spectrometry to track microbial incubation, we revealed a wide spectrum of CRAM bioavailability regulated by molecular polarity. CRAM with lower polarity were preferentially degraded, whereas microbial reworking led to production of higher-polarity CRAM, characterized by increased oxidation state, nitrogen content, and aromaticity. Some microbially transformed CRAM were frequently detected in a global DOM dataset of 1485 seawater samples, suggesting their potential persistence in marine environments. This study provides molecular insights into the biorecalcitrance and transformation pathway of CRAM, underscoring the complexity and dynamic nature of marine organic carbon cycling.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 28\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw1148\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw1148\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw1148","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Constraining biorecalcitrance of carboxyl-rich alicyclic molecules in the ocean
Marine dissolved organic matter (DOM) is one of Earth’s largest long-term carbon reservoirs, critical to the global carbon cycle. A key breakthrough in understanding this pool is the identification of biorefractory carboxyl-rich alicyclic molecules (CRAM). Recent studies have challenged the biorecalcitrance of CRAM but lacked detailed molecular evidence. Using advanced online countergradient liquid chromatography–Fourier transform ion cyclotron resonance mass spectrometry to track microbial incubation, we revealed a wide spectrum of CRAM bioavailability regulated by molecular polarity. CRAM with lower polarity were preferentially degraded, whereas microbial reworking led to production of higher-polarity CRAM, characterized by increased oxidation state, nitrogen content, and aromaticity. Some microbially transformed CRAM were frequently detected in a global DOM dataset of 1485 seawater samples, suggesting their potential persistence in marine environments. This study provides molecular insights into the biorecalcitrance and transformation pathway of CRAM, underscoring the complexity and dynamic nature of marine organic carbon cycling.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.