在衰老大鼠模型中,具有认知相关结构变化的蛋白质表现出减少的再折叠能力

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Haley E. Tarbox, Audrey Branch, Stephen D. Fried
{"title":"在衰老大鼠模型中,具有认知相关结构变化的蛋白质表现出减少的再折叠能力","authors":"Haley E. Tarbox,&nbsp;Audrey Branch,&nbsp;Stephen D. Fried","doi":"10.1126/sciadv.adt3778","DOIUrl":null,"url":null,"abstract":"<div >Cognitive decline during aging represents a major societal burden, causing both personal and economic hardship in an increasingly aging population. Many studies have found that the proteostasis network, which functions to keep proteins properly folded, is impaired with age, suggesting that there may be many proteins that incur structural alterations with age. Here, we used limited proteolysis mass spectrometry, a structural proteomic method, to globally interrogate protein conformational changes in a rat model of cognitive aging. Specifically, we compared soluble hippocampal proteins from aged rats with preserved cognition to those from aged rats with impaired cognition. We identified a couple hundred proteins as having undergone cognition-associated structural changes (CASCs). We report that CASC proteins are substantially more likely to be nonrefoldable than non-CASC proteins, meaning that they typically cannot spontaneously refold to their native conformations after being chemically denatured. These findings suggest that noncovalent, conformational alterations may be general features in cognitive decline.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 28","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt3778","citationCount":"0","resultStr":"{\"title\":\"Proteins with cognition-associated structural changes in a rat model of aging exhibit reduced refolding capacity\",\"authors\":\"Haley E. Tarbox,&nbsp;Audrey Branch,&nbsp;Stephen D. Fried\",\"doi\":\"10.1126/sciadv.adt3778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Cognitive decline during aging represents a major societal burden, causing both personal and economic hardship in an increasingly aging population. Many studies have found that the proteostasis network, which functions to keep proteins properly folded, is impaired with age, suggesting that there may be many proteins that incur structural alterations with age. Here, we used limited proteolysis mass spectrometry, a structural proteomic method, to globally interrogate protein conformational changes in a rat model of cognitive aging. Specifically, we compared soluble hippocampal proteins from aged rats with preserved cognition to those from aged rats with impaired cognition. We identified a couple hundred proteins as having undergone cognition-associated structural changes (CASCs). We report that CASC proteins are substantially more likely to be nonrefoldable than non-CASC proteins, meaning that they typically cannot spontaneously refold to their native conformations after being chemically denatured. These findings suggest that noncovalent, conformational alterations may be general features in cognitive decline.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 28\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt3778\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt3778\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt3778","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

老龄化期间的认知能力下降是一个主要的社会负担,在日益老龄化的人口中造成个人和经济困难。许多研究发现,保持蛋白质正常折叠的蛋白质平衡网络随着年龄的增长而受损,这表明可能有许多蛋白质随着年龄的增长而发生结构改变。在这里,我们使用有限蛋白水解质谱,一种结构蛋白质组学方法,来全面询问认知衰老大鼠模型中的蛋白质构象变化。具体来说,我们比较了认知功能完好的老年大鼠和认知功能受损的老年大鼠的可溶性海马蛋白。我们确定了几百个蛋白质经历了认知相关的结构变化(CASCs)。我们报告说,CASC蛋白比非CASC蛋白更有可能是不可折叠的,这意味着它们在化学变性后通常不能自发地重新折叠到它们的天然构象。这些发现表明,非共价的构象改变可能是认知能力下降的一般特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Proteins with cognition-associated structural changes in a rat model of aging exhibit reduced refolding capacity

Proteins with cognition-associated structural changes in a rat model of aging exhibit reduced refolding capacity
Cognitive decline during aging represents a major societal burden, causing both personal and economic hardship in an increasingly aging population. Many studies have found that the proteostasis network, which functions to keep proteins properly folded, is impaired with age, suggesting that there may be many proteins that incur structural alterations with age. Here, we used limited proteolysis mass spectrometry, a structural proteomic method, to globally interrogate protein conformational changes in a rat model of cognitive aging. Specifically, we compared soluble hippocampal proteins from aged rats with preserved cognition to those from aged rats with impaired cognition. We identified a couple hundred proteins as having undergone cognition-associated structural changes (CASCs). We report that CASC proteins are substantially more likely to be nonrefoldable than non-CASC proteins, meaning that they typically cannot spontaneously refold to their native conformations after being chemically denatured. These findings suggest that noncovalent, conformational alterations may be general features in cognitive decline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信