非共价相互作用阈值控制易位和细胞毒性:一项计算-实验联合研究

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Xianyu Song*, Xianli Duan, Wenjun Xiang and Shuangliang Zhao, 
{"title":"非共价相互作用阈值控制易位和细胞毒性:一项计算-实验联合研究","authors":"Xianyu Song*,&nbsp;Xianli Duan,&nbsp;Wenjun Xiang and Shuangliang Zhao,&nbsp;","doi":"10.1021/acs.jmedchem.5c01196","DOIUrl":null,"url":null,"abstract":"<p >Designing membrane-permeable drugs requires a precise understanding of noncovalent interactions governing cellular uptake. We propose a molecular thermodynamic–dynamic (MTD) framework that quantifies interaction thresholds dictating permeation efficiency, using polychlorinated biphenyls (PCBs) as structurally tunable probes. Our results reveal that optimal permeability occurs within a defined differential binding energy (Δ<i>G</i> = −3.6 to −6.8 kcal/mol for H-/X-bonding), facilitating membrane translocation through a binding-flip mechanism. Beyond this range, excessive binding affinity (Δ<i>G</i> &lt; −7.5 kcal/mol) leads to kinetic trapping at the membrane surface. Notably, the membrane permeation coefficients exhibit a strong linear correlation with differential binding energy (<i>R</i><sup>2</sup> = 0.93), as revealed by five distinct transition states, including a rate-limiting vertical rotation step (Δ<i>G</i> = 2.4 kcal/mol). These findings yield two critical design principles: (i) intermediate differential binding (−4.0 to −5.0 kcal/mol) maximizes permeability, aligning with optimal ranges in FDA-approved membrane-permeable drugs, and (ii) targeted X-bonding modulation precisely controls membrane interaction specificity.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"68 14","pages":"15015–15025"},"PeriodicalIF":6.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncovalent Interaction Thresholds Control Translocation and Cytotoxicity: A Combined Computational–Experimental Study\",\"authors\":\"Xianyu Song*,&nbsp;Xianli Duan,&nbsp;Wenjun Xiang and Shuangliang Zhao,&nbsp;\",\"doi\":\"10.1021/acs.jmedchem.5c01196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Designing membrane-permeable drugs requires a precise understanding of noncovalent interactions governing cellular uptake. We propose a molecular thermodynamic–dynamic (MTD) framework that quantifies interaction thresholds dictating permeation efficiency, using polychlorinated biphenyls (PCBs) as structurally tunable probes. Our results reveal that optimal permeability occurs within a defined differential binding energy (Δ<i>G</i> = −3.6 to −6.8 kcal/mol for H-/X-bonding), facilitating membrane translocation through a binding-flip mechanism. Beyond this range, excessive binding affinity (Δ<i>G</i> &lt; −7.5 kcal/mol) leads to kinetic trapping at the membrane surface. Notably, the membrane permeation coefficients exhibit a strong linear correlation with differential binding energy (<i>R</i><sup>2</sup> = 0.93), as revealed by five distinct transition states, including a rate-limiting vertical rotation step (Δ<i>G</i> = 2.4 kcal/mol). These findings yield two critical design principles: (i) intermediate differential binding (−4.0 to −5.0 kcal/mol) maximizes permeability, aligning with optimal ranges in FDA-approved membrane-permeable drugs, and (ii) targeted X-bonding modulation precisely controls membrane interaction specificity.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"68 14\",\"pages\":\"15015–15025\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c01196\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c01196","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

设计膜渗透药物需要精确理解控制细胞摄取的非共价相互作用。我们提出了一个分子热力学-动力学(MTD)框架,该框架使用多氯联苯(pcb)作为结构可调探针,量化决定渗透效率的相互作用阈值。我们的研究结果表明,最佳渗透性发生在定义的微分结合能范围内(ΔG =−3.6至−6.8 kcal/mol的H-/ x键),通过结合翻转机制促进膜易位。超出这个范围,过度的结合亲和力(ΔG <;−7.5 kcal/mol)导致膜表面的动力学捕获。值得注意的是,膜渗透系数与差结合能呈很强的线性相关(R2 = 0.93),这表明了5个不同的过渡态,包括一个限速的垂直旋转步骤(ΔG = 2.4 kcal/mol)。这些发现产生了两个关键的设计原则:(i)中间差异结合(- 4.0至- 5.0 kcal/mol)使通透性最大化,与fda批准的膜透性药物的最佳范围一致;(ii)靶向x键调节精确控制膜相互作用特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Noncovalent Interaction Thresholds Control Translocation and Cytotoxicity: A Combined Computational–Experimental Study

Noncovalent Interaction Thresholds Control Translocation and Cytotoxicity: A Combined Computational–Experimental Study

Designing membrane-permeable drugs requires a precise understanding of noncovalent interactions governing cellular uptake. We propose a molecular thermodynamic–dynamic (MTD) framework that quantifies interaction thresholds dictating permeation efficiency, using polychlorinated biphenyls (PCBs) as structurally tunable probes. Our results reveal that optimal permeability occurs within a defined differential binding energy (ΔG = −3.6 to −6.8 kcal/mol for H-/X-bonding), facilitating membrane translocation through a binding-flip mechanism. Beyond this range, excessive binding affinity (ΔG < −7.5 kcal/mol) leads to kinetic trapping at the membrane surface. Notably, the membrane permeation coefficients exhibit a strong linear correlation with differential binding energy (R2 = 0.93), as revealed by five distinct transition states, including a rate-limiting vertical rotation step (ΔG = 2.4 kcal/mol). These findings yield two critical design principles: (i) intermediate differential binding (−4.0 to −5.0 kcal/mol) maximizes permeability, aligning with optimal ranges in FDA-approved membrane-permeable drugs, and (ii) targeted X-bonding modulation precisely controls membrane interaction specificity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信