不同冷轧变形5383铝合金腐蚀转变机理研究

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Jianing Xu , Yingwei Song , Yong Cai , Kaihui Dong , Hongchi Yang , Qizhong Zhao , Beibei Wang , Dingrui Ni , En-Hou Han
{"title":"不同冷轧变形5383铝合金腐蚀转变机理研究","authors":"Jianing Xu ,&nbsp;Yingwei Song ,&nbsp;Yong Cai ,&nbsp;Kaihui Dong ,&nbsp;Hongchi Yang ,&nbsp;Qizhong Zhao ,&nbsp;Beibei Wang ,&nbsp;Dingrui Ni ,&nbsp;En-Hou Han","doi":"10.1016/j.electacta.2025.146891","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of cold rolling deformation on the microstructure evolution and corrosion behavior of 5383 Al alloy was investigated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning Kelvin Probe Microscopy (SKPM) and immersion tests. The transition of corrosion mechanism was found on 5383 Al alloy with different deformation. Intergranular corrosion (IGC) is the primary corrosion mode for moderate deformation, accompanying with the pitting corrosion in the later stage. In contrast, under severe deformation, the IGC degree significantly weakens, due to the decrease of β precipitates at grain boundaries (GBs), while the galvanic effect between Al-Mn intermetallic particles (IMPs) and Al matrix is intensified to induce severe pitting corrosion.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"537 ","pages":"Article 146891"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the transition of corrosion mechanism of 5383 Al alloy with different cold rolling deformation\",\"authors\":\"Jianing Xu ,&nbsp;Yingwei Song ,&nbsp;Yong Cai ,&nbsp;Kaihui Dong ,&nbsp;Hongchi Yang ,&nbsp;Qizhong Zhao ,&nbsp;Beibei Wang ,&nbsp;Dingrui Ni ,&nbsp;En-Hou Han\",\"doi\":\"10.1016/j.electacta.2025.146891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of cold rolling deformation on the microstructure evolution and corrosion behavior of 5383 Al alloy was investigated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning Kelvin Probe Microscopy (SKPM) and immersion tests. The transition of corrosion mechanism was found on 5383 Al alloy with different deformation. Intergranular corrosion (IGC) is the primary corrosion mode for moderate deformation, accompanying with the pitting corrosion in the later stage. In contrast, under severe deformation, the IGC degree significantly weakens, due to the decrease of β precipitates at grain boundaries (GBs), while the galvanic effect between Al-Mn intermetallic particles (IMPs) and Al matrix is intensified to induce severe pitting corrosion.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"537 \",\"pages\":\"Article 146891\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625012514\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625012514","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

采用扫描电镜(SEM)、透射电镜(TEM)、扫描开尔文探针显微镜(SKPM)和浸渍试验研究了冷轧变形对5383铝合金组织演变和腐蚀行为的影响。不同变形量的5383铝合金腐蚀机制发生了转变。中度变形时以晶间腐蚀(IGC)为主,后期伴有点蚀。而在剧烈变形下,由于晶界处β相的减少,IGC度明显减弱,Al- mn金属间颗粒(IMPs)与Al基体之间的电偶效应加剧,导致严重的点蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on the transition of corrosion mechanism of 5383 Al alloy with different cold rolling deformation

Study on the transition of corrosion mechanism of 5383 Al alloy with different cold rolling deformation

Study on the transition of corrosion mechanism of 5383 Al alloy with different cold rolling deformation
The effect of cold rolling deformation on the microstructure evolution and corrosion behavior of 5383 Al alloy was investigated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning Kelvin Probe Microscopy (SKPM) and immersion tests. The transition of corrosion mechanism was found on 5383 Al alloy with different deformation. Intergranular corrosion (IGC) is the primary corrosion mode for moderate deformation, accompanying with the pitting corrosion in the later stage. In contrast, under severe deformation, the IGC degree significantly weakens, due to the decrease of β precipitates at grain boundaries (GBs), while the galvanic effect between Al-Mn intermetallic particles (IMPs) and Al matrix is intensified to induce severe pitting corrosion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信