Sabrina Grigoletto, Kavosh Karami, Iago Maye, Ajay Padunnappattu, Siddharth Ravichandran, Mohammad Wahiduzzaman, Louis Vanduyfhuys, Veronique Van Speybroeck, Matthias Thommes, Joeri F. M. Denayer, Norbert Stock and Guillaume Maurin
{"title":"用于湿润条件下选择性丙酮捕获的高性能疏水mof","authors":"Sabrina Grigoletto, Kavosh Karami, Iago Maye, Ajay Padunnappattu, Siddharth Ravichandran, Mohammad Wahiduzzaman, Louis Vanduyfhuys, Veronique Van Speybroeck, Matthias Thommes, Joeri F. M. Denayer, Norbert Stock and Guillaume Maurin","doi":"10.1039/D5TA03712C","DOIUrl":null,"url":null,"abstract":"<p >Capturing acetone, a major indoor air pollutant, under humid conditions is a longstanding challenge in materials science. The key obstacle lies in finding porous adsorbents that simultaneously exhibit strong affinity for acetone and intrinsic hydrophobicity, a rare and elusive pairing. Leveraging the structural and chemical versatility of metal–organic frameworks (MOFs), we first explored a diverse set of MOFs using force field Monte Carlo and density-functional theory calculations. This computational strategy identified CAU-11(Al) as a top performer: a hydrophobic, small pore MOF that enables both high acetone affinity and uptake at trace concentrations with excellent selectivity over water. Experimental validation through gas-phase pulse chromatography, adsorption measurements, and breakthrough studies confirmed the outstanding performance of this sorbent under competitive acetone/water conditions. These results position CAU-11(Al) as a promising material for real-world acetone capture in humid indoor environments.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 32","pages":" 26401-26412"},"PeriodicalIF":9.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta03712c?page=search","citationCount":"0","resultStr":"{\"title\":\"High-performance hydrophobic MOFs for selective acetone capture under humid conditions†\",\"authors\":\"Sabrina Grigoletto, Kavosh Karami, Iago Maye, Ajay Padunnappattu, Siddharth Ravichandran, Mohammad Wahiduzzaman, Louis Vanduyfhuys, Veronique Van Speybroeck, Matthias Thommes, Joeri F. M. Denayer, Norbert Stock and Guillaume Maurin\",\"doi\":\"10.1039/D5TA03712C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Capturing acetone, a major indoor air pollutant, under humid conditions is a longstanding challenge in materials science. The key obstacle lies in finding porous adsorbents that simultaneously exhibit strong affinity for acetone and intrinsic hydrophobicity, a rare and elusive pairing. Leveraging the structural and chemical versatility of metal–organic frameworks (MOFs), we first explored a diverse set of MOFs using force field Monte Carlo and density-functional theory calculations. This computational strategy identified CAU-11(Al) as a top performer: a hydrophobic, small pore MOF that enables both high acetone affinity and uptake at trace concentrations with excellent selectivity over water. Experimental validation through gas-phase pulse chromatography, adsorption measurements, and breakthrough studies confirmed the outstanding performance of this sorbent under competitive acetone/water conditions. These results position CAU-11(Al) as a promising material for real-world acetone capture in humid indoor environments.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 32\",\"pages\":\" 26401-26412\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta03712c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03712c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03712c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High-performance hydrophobic MOFs for selective acetone capture under humid conditions†
Capturing acetone, a major indoor air pollutant, under humid conditions is a longstanding challenge in materials science. The key obstacle lies in finding porous adsorbents that simultaneously exhibit strong affinity for acetone and intrinsic hydrophobicity, a rare and elusive pairing. Leveraging the structural and chemical versatility of metal–organic frameworks (MOFs), we first explored a diverse set of MOFs using force field Monte Carlo and density-functional theory calculations. This computational strategy identified CAU-11(Al) as a top performer: a hydrophobic, small pore MOF that enables both high acetone affinity and uptake at trace concentrations with excellent selectivity over water. Experimental validation through gas-phase pulse chromatography, adsorption measurements, and breakthrough studies confirmed the outstanding performance of this sorbent under competitive acetone/water conditions. These results position CAU-11(Al) as a promising material for real-world acetone capture in humid indoor environments.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.