Takaki Yahiro, Landon Bayless-Edwards, James A. Jones, Yizhou Zhuo, Lei Ma, Maozhen Qin, Tianyi Mao, Haining Zhong
{"title":"一种高性能的基因编码传感器,用于体内PKC活性的细胞成像","authors":"Takaki Yahiro, Landon Bayless-Edwards, James A. Jones, Yizhou Zhuo, Lei Ma, Maozhen Qin, Tianyi Mao, Haining Zhong","doi":"10.1038/s41467-025-61729-7","DOIUrl":null,"url":null,"abstract":"<p>Neuromodulators impose powerful control over brain function via their regulation of intracellular signaling through G-protein coupled receptors. In contrast to those of Gs and Gi pathways, in vivo imaging of the signaling events downstream of Gq-coupled receptors remains challenging. Here, we introduce CKAR3, a genetically encoded fluorescence lifetime sensor that reports the activity of protein kinase C (PKC), a major downstream effector of the Gq pathway. CKAR3 exhibits a lifetime dynamic range 5-fold larger than any existing PKC sensor. It specifically detects PKC phosphorylation with seconds kinetics without perturbing neuronal functions. In vivo two-photon lifetime imaging of CKAR3 reveals tonic PKC activity in cortical neurons. Animal locomotion elicits robust PKC activity in sparse neuronal ensembles in the motor cortex. Both basal and locomotion-elicited PKC activities are in part mediated by muscarinic acetylcholine receptors. Overall, CKAR3 enables interrogation of Gq signaling dynamics mediated by PKC in behaving animals.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance genetically encoded sensor for cellular imaging of PKC activity in vivo\",\"authors\":\"Takaki Yahiro, Landon Bayless-Edwards, James A. Jones, Yizhou Zhuo, Lei Ma, Maozhen Qin, Tianyi Mao, Haining Zhong\",\"doi\":\"10.1038/s41467-025-61729-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neuromodulators impose powerful control over brain function via their regulation of intracellular signaling through G-protein coupled receptors. In contrast to those of Gs and Gi pathways, in vivo imaging of the signaling events downstream of Gq-coupled receptors remains challenging. Here, we introduce CKAR3, a genetically encoded fluorescence lifetime sensor that reports the activity of protein kinase C (PKC), a major downstream effector of the Gq pathway. CKAR3 exhibits a lifetime dynamic range 5-fold larger than any existing PKC sensor. It specifically detects PKC phosphorylation with seconds kinetics without perturbing neuronal functions. In vivo two-photon lifetime imaging of CKAR3 reveals tonic PKC activity in cortical neurons. Animal locomotion elicits robust PKC activity in sparse neuronal ensembles in the motor cortex. Both basal and locomotion-elicited PKC activities are in part mediated by muscarinic acetylcholine receptors. Overall, CKAR3 enables interrogation of Gq signaling dynamics mediated by PKC in behaving animals.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61729-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61729-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A high-performance genetically encoded sensor for cellular imaging of PKC activity in vivo
Neuromodulators impose powerful control over brain function via their regulation of intracellular signaling through G-protein coupled receptors. In contrast to those of Gs and Gi pathways, in vivo imaging of the signaling events downstream of Gq-coupled receptors remains challenging. Here, we introduce CKAR3, a genetically encoded fluorescence lifetime sensor that reports the activity of protein kinase C (PKC), a major downstream effector of the Gq pathway. CKAR3 exhibits a lifetime dynamic range 5-fold larger than any existing PKC sensor. It specifically detects PKC phosphorylation with seconds kinetics without perturbing neuronal functions. In vivo two-photon lifetime imaging of CKAR3 reveals tonic PKC activity in cortical neurons. Animal locomotion elicits robust PKC activity in sparse neuronal ensembles in the motor cortex. Both basal and locomotion-elicited PKC activities are in part mediated by muscarinic acetylcholine receptors. Overall, CKAR3 enables interrogation of Gq signaling dynamics mediated by PKC in behaving animals.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.