Fe3O4中Verwey跃迁缺陷稳定金属岛的近场光学检测

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kajal Tiwari, Mostafa Ibrahim Shehata Marzouk, Ke Xiao, Malleswararao Tangi, Stuart Stephen Papworth Parkin
{"title":"Fe3O4中Verwey跃迁缺陷稳定金属岛的近场光学检测","authors":"Kajal Tiwari, Mostafa Ibrahim Shehata Marzouk, Ke Xiao, Malleswararao Tangi, Stuart Stephen Papworth Parkin","doi":"10.1002/adfm.202507075","DOIUrl":null,"url":null,"abstract":"Magnetite (Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>) undergoes a metal‐to‐insulator transition (MIT) at the Verwey transition that is accompanied by significant structural distortions. This archetypical transition is extensively studied due to its highly correlated nature. Here, the formation of defect‐stabilized metallic islands is shown at the MIT that we directly image using high‐resolution scattering‐type scanning near‐field optical microscopy in the mid‐infrared (MIR) to terahertz (THz) spectral range. The transition to the insulating state on cooling is accompanied by the formation of remnant metallic islands just a few hundred nm in extent within less than 1 K of the MIT. Notably, these islands occur at similar places on repeated cooling cycles, suggesting the presence of pinning centers. Temperature‐dependent low‐frequency MIR and THz optical responses show a similarly sharp MIT, indicating a clear first‐order transition. On the other hand, as compared to the MIR signal, a reduction in the THz signal at temperatures above the MIT is indicative of short‐range ordering consistent with the formation of polarons. The findings highlight the importance of nanoscale optical imaging in understanding the electronic properties of strongly correlated materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near‐Field Optical Detection of Defect‐Stabilized Metallic Islands at the Verwey Transition in Fe3O4\",\"authors\":\"Kajal Tiwari, Mostafa Ibrahim Shehata Marzouk, Ke Xiao, Malleswararao Tangi, Stuart Stephen Papworth Parkin\",\"doi\":\"10.1002/adfm.202507075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetite (Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>) undergoes a metal‐to‐insulator transition (MIT) at the Verwey transition that is accompanied by significant structural distortions. This archetypical transition is extensively studied due to its highly correlated nature. Here, the formation of defect‐stabilized metallic islands is shown at the MIT that we directly image using high‐resolution scattering‐type scanning near‐field optical microscopy in the mid‐infrared (MIR) to terahertz (THz) spectral range. The transition to the insulating state on cooling is accompanied by the formation of remnant metallic islands just a few hundred nm in extent within less than 1 K of the MIT. Notably, these islands occur at similar places on repeated cooling cycles, suggesting the presence of pinning centers. Temperature‐dependent low‐frequency MIR and THz optical responses show a similarly sharp MIT, indicating a clear first‐order transition. On the other hand, as compared to the MIR signal, a reduction in the THz signal at temperatures above the MIT is indicative of short‐range ordering consistent with the formation of polarons. The findings highlight the importance of nanoscale optical imaging in understanding the electronic properties of strongly correlated materials.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202507075\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202507075","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁铁矿(Fe3O4)在Verwey跃迁处经历了金属-绝缘体转变(MIT),伴随着显著的结构扭曲。这种典型的转变由于其高度相关的性质而被广泛研究。在MIT上,我们使用中红外(MIR)到太赫兹(THz)光谱范围内的高分辨率散射型扫描近场光学显微镜直接对缺陷稳定金属岛的形成进行了成像。在冷却过渡到绝缘状态时,伴随着残余金属岛的形成,其范围只有几百纳米,在麻省理工学院不到1 K的范围内。值得注意的是,这些岛屿在重复的冷却周期中出现在相似的地方,这表明存在固定中心。温度相关的低频MIR和太赫兹光学响应显示出类似的尖锐的MIT,表明明显的一阶跃迁。另一方面,与MIR信号相比,在MIT以上温度下太赫兹信号的减弱表明了与极化子形成一致的短程有序。这些发现强调了纳米尺度光学成像在理解强相关材料的电子特性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near‐Field Optical Detection of Defect‐Stabilized Metallic Islands at the Verwey Transition in Fe3O4
Magnetite (Fe3O4) undergoes a metal‐to‐insulator transition (MIT) at the Verwey transition that is accompanied by significant structural distortions. This archetypical transition is extensively studied due to its highly correlated nature. Here, the formation of defect‐stabilized metallic islands is shown at the MIT that we directly image using high‐resolution scattering‐type scanning near‐field optical microscopy in the mid‐infrared (MIR) to terahertz (THz) spectral range. The transition to the insulating state on cooling is accompanied by the formation of remnant metallic islands just a few hundred nm in extent within less than 1 K of the MIT. Notably, these islands occur at similar places on repeated cooling cycles, suggesting the presence of pinning centers. Temperature‐dependent low‐frequency MIR and THz optical responses show a similarly sharp MIT, indicating a clear first‐order transition. On the other hand, as compared to the MIR signal, a reduction in the THz signal at temperatures above the MIT is indicative of short‐range ordering consistent with the formation of polarons. The findings highlight the importance of nanoscale optical imaging in understanding the electronic properties of strongly correlated materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信