DNA纳米技术-通过细胞外囊泡进行癌症诊断的超分子水凝胶生物传感器

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianpu Tang, Zhen Cui, Qian Li, Bin Ke, Peifeng Liu, Dayong Yang, Chi Yao
{"title":"DNA纳米技术-通过细胞外囊泡进行癌症诊断的超分子水凝胶生物传感器","authors":"Jianpu Tang, Zhen Cui, Qian Li, Bin Ke, Peifeng Liu, Dayong Yang, Chi Yao","doi":"10.1002/adfm.202512115","DOIUrl":null,"url":null,"abstract":"Cancer‐associated extracellular vesicles (EVs) are promising as liquid biopsy biomarkers for early cancer diagnosis to reduce cancer‐related mortality, yet their clinical utility remains hampered by cumbersome workflows and insufficient diagnostic accuracy. Herein, these limitations are addressed with a DNA nanotechnology‐engineered supramolecular hydrogel biosensor that integrates EV recognition, isolation, enrichment, and detection into a rapid assay (30 min vs hours for conventional methods). The biosensor leverages a sequence‐programmable DNA hydrogel matrix, constructed via gene‐like precision in supramolecular assembly, to spatially organize polyvalent aptamers for efficient EV capture. Crucially, the cancer‐associated miRNA‐21 and membrane protein epithelial cell adhesion molecule (EpCAM) synergistically trigger cascaded assembly of DNA probes, generating three‐color fluorescence signals for semi‐quantitative dual‐marker analysis. Remarkably, the biosensor demonstrates exceptional correlation with gold‐standard techniques methods, with Pearson's coefficients of 0.987 for miRNA‐21 and 0.999 for EpCAM. The dual‐marker approach minimizes false negatives and achieves 100% accuracy in distinguishing breast cancer patients from healthy donors in serum samples. By unifying molecular recognition, signal amplification, and multiplexed detection in a single material platform, this work advances EV‐based liquid biopsy through a chemistry‐driven design, offering a scalable, rapid, and ultrasensitive tool for early cancer diagnosis.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"22 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA Nanotechnology‐Engineered Supramolecular Hydrogel Biosensor for Cancer Diagnosis via Extracellular Vesicles\",\"authors\":\"Jianpu Tang, Zhen Cui, Qian Li, Bin Ke, Peifeng Liu, Dayong Yang, Chi Yao\",\"doi\":\"10.1002/adfm.202512115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer‐associated extracellular vesicles (EVs) are promising as liquid biopsy biomarkers for early cancer diagnosis to reduce cancer‐related mortality, yet their clinical utility remains hampered by cumbersome workflows and insufficient diagnostic accuracy. Herein, these limitations are addressed with a DNA nanotechnology‐engineered supramolecular hydrogel biosensor that integrates EV recognition, isolation, enrichment, and detection into a rapid assay (30 min vs hours for conventional methods). The biosensor leverages a sequence‐programmable DNA hydrogel matrix, constructed via gene‐like precision in supramolecular assembly, to spatially organize polyvalent aptamers for efficient EV capture. Crucially, the cancer‐associated miRNA‐21 and membrane protein epithelial cell adhesion molecule (EpCAM) synergistically trigger cascaded assembly of DNA probes, generating three‐color fluorescence signals for semi‐quantitative dual‐marker analysis. Remarkably, the biosensor demonstrates exceptional correlation with gold‐standard techniques methods, with Pearson's coefficients of 0.987 for miRNA‐21 and 0.999 for EpCAM. The dual‐marker approach minimizes false negatives and achieves 100% accuracy in distinguishing breast cancer patients from healthy donors in serum samples. By unifying molecular recognition, signal amplification, and multiplexed detection in a single material platform, this work advances EV‐based liquid biopsy through a chemistry‐driven design, offering a scalable, rapid, and ultrasensitive tool for early cancer diagnosis.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202512115\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202512115","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

癌症相关细胞外囊泡(ev)作为早期癌症诊断的液体活检生物标志物有望降低癌症相关死亡率,但其临床应用仍受到繁琐的工作流程和诊断准确性不足的阻碍。本文通过DNA纳米技术工程的超分子水凝胶生物传感器解决了这些限制,该传感器将EV识别、分离、富集和检测集成到快速分析中(30分钟vs传统方法的小时)。该生物传感器利用序列可编程的DNA水凝胶基质,通过超分子组装中的基因样精度构建,在空间上组织多价适体,以实现高效的EV捕获。关键是,与癌症相关的miRNA - 21和膜蛋白上皮细胞粘附分子(EpCAM)协同触发DNA探针级联组装,产生三色荧光信号,用于半定量双标记分析。值得注意的是,该生物传感器与金标准技术方法具有特殊的相关性,miRNA‐21的Pearson系数为0.987,EpCAM的Pearson系数为0.999。双标记方法最大限度地减少了假阴性,并在血清样本中区分乳腺癌患者和健康供体时达到100%的准确性。通过在单一材料平台上统一分子识别、信号放大和多路检测,这项工作通过化学驱动设计推进了基于EV的液体活检,为早期癌症诊断提供了可扩展、快速和超灵敏的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA Nanotechnology‐Engineered Supramolecular Hydrogel Biosensor for Cancer Diagnosis via Extracellular Vesicles
Cancer‐associated extracellular vesicles (EVs) are promising as liquid biopsy biomarkers for early cancer diagnosis to reduce cancer‐related mortality, yet their clinical utility remains hampered by cumbersome workflows and insufficient diagnostic accuracy. Herein, these limitations are addressed with a DNA nanotechnology‐engineered supramolecular hydrogel biosensor that integrates EV recognition, isolation, enrichment, and detection into a rapid assay (30 min vs hours for conventional methods). The biosensor leverages a sequence‐programmable DNA hydrogel matrix, constructed via gene‐like precision in supramolecular assembly, to spatially organize polyvalent aptamers for efficient EV capture. Crucially, the cancer‐associated miRNA‐21 and membrane protein epithelial cell adhesion molecule (EpCAM) synergistically trigger cascaded assembly of DNA probes, generating three‐color fluorescence signals for semi‐quantitative dual‐marker analysis. Remarkably, the biosensor demonstrates exceptional correlation with gold‐standard techniques methods, with Pearson's coefficients of 0.987 for miRNA‐21 and 0.999 for EpCAM. The dual‐marker approach minimizes false negatives and achieves 100% accuracy in distinguishing breast cancer patients from healthy donors in serum samples. By unifying molecular recognition, signal amplification, and multiplexed detection in a single material platform, this work advances EV‐based liquid biopsy through a chemistry‐driven design, offering a scalable, rapid, and ultrasensitive tool for early cancer diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信