协同自组装单层增强高效串联钙钛矿太阳能电池的埋藏界面锚定

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huiyao Zhao, Xiwen Zhang, Kai Zhang, Prof. Wenfeng Zhang, Rui Zhou, Yanbei Wei, Jun Qu, Yangdi Chen, Hongyu Li, Prof. Xueping Zong, Shantao Zhang, Prof. Mao Liang, Prof. Yuelong Huang, Prof. Haijin Li, Prof. Yingguo Yang, Wei Long, Prof. Yang Wang, Prof. Shangfeng Yang
{"title":"协同自组装单层增强高效串联钙钛矿太阳能电池的埋藏界面锚定","authors":"Huiyao Zhao,&nbsp;Xiwen Zhang,&nbsp;Kai Zhang,&nbsp;Prof. Wenfeng Zhang,&nbsp;Rui Zhou,&nbsp;Yanbei Wei,&nbsp;Jun Qu,&nbsp;Yangdi Chen,&nbsp;Hongyu Li,&nbsp;Prof. Xueping Zong,&nbsp;Shantao Zhang,&nbsp;Prof. Mao Liang,&nbsp;Prof. Yuelong Huang,&nbsp;Prof. Haijin Li,&nbsp;Prof. Yingguo Yang,&nbsp;Wei Long,&nbsp;Prof. Yang Wang,&nbsp;Prof. Shangfeng Yang","doi":"10.1002/anie.202504237","DOIUrl":null,"url":null,"abstract":"<p>Carbazole-based self-assembled monolayers (SAMs) have been commonly used as a single-component hole transport layer (HTL) in inverted perovskite solar cells (PSCs), but suffer from facile π-π stacking and self-aggregations in solution and consequently poor anchoring ability with the atop perovskite layer. Herein, we developed a synergistic SAM (syn-SAM) strategy through blending a non-planar molecule 3,3-(4-amino-4H-1,2,4-triazole-3,5-diyl)-dibenzo acid (ABT) bearing multiple anchoring sites with the commonly used Me-4PACz SAM. The coexistence of these two components leverages π-π interactions and hydrogen bonding to mitigate aggregation effects, affording dense and uniform SAM, thereby enhancing anchoring at the perovskite buried interface and alleviating interfacial charge recombination. ABT incorporation further helps to mitigating tensile strain in perovskite film. Additionally, this strategy offers advantages of multi-device compatibility. The single-junction champion inverted PSC devices based on syn-SAM deliver power conversion efficiencies (PCEs) of 25.75% (certified 25.45%) and 22.76% (area: 0.105 cm<sup>2</sup>) for 1.56 and 1.68 eV bandgap perovskites, respectively. Moreover, this approach is beneficial for the monolithic perovskite/silicon tandem solar cells based on fully textured surfaces of heterojunction (HJT) silicon bottom cells, affording PCEs of 31.56% (area: 1.07 cm<sup>2</sup>) and 26.57% (area: 20.06 cm<sup>2</sup>). All devices exhibit excellent long-term storage and thermal stability even under non-encapsulated conditions.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 36","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Self-Assembled Monolayers Reinforce Buried Interface Anchoring for High-Efficiency Tandem Perovskite Solar Cells\",\"authors\":\"Huiyao Zhao,&nbsp;Xiwen Zhang,&nbsp;Kai Zhang,&nbsp;Prof. Wenfeng Zhang,&nbsp;Rui Zhou,&nbsp;Yanbei Wei,&nbsp;Jun Qu,&nbsp;Yangdi Chen,&nbsp;Hongyu Li,&nbsp;Prof. Xueping Zong,&nbsp;Shantao Zhang,&nbsp;Prof. Mao Liang,&nbsp;Prof. Yuelong Huang,&nbsp;Prof. Haijin Li,&nbsp;Prof. Yingguo Yang,&nbsp;Wei Long,&nbsp;Prof. Yang Wang,&nbsp;Prof. Shangfeng Yang\",\"doi\":\"10.1002/anie.202504237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbazole-based self-assembled monolayers (SAMs) have been commonly used as a single-component hole transport layer (HTL) in inverted perovskite solar cells (PSCs), but suffer from facile π-π stacking and self-aggregations in solution and consequently poor anchoring ability with the atop perovskite layer. Herein, we developed a synergistic SAM (syn-SAM) strategy through blending a non-planar molecule 3,3-(4-amino-4H-1,2,4-triazole-3,5-diyl)-dibenzo acid (ABT) bearing multiple anchoring sites with the commonly used Me-4PACz SAM. The coexistence of these two components leverages π-π interactions and hydrogen bonding to mitigate aggregation effects, affording dense and uniform SAM, thereby enhancing anchoring at the perovskite buried interface and alleviating interfacial charge recombination. ABT incorporation further helps to mitigating tensile strain in perovskite film. Additionally, this strategy offers advantages of multi-device compatibility. The single-junction champion inverted PSC devices based on syn-SAM deliver power conversion efficiencies (PCEs) of 25.75% (certified 25.45%) and 22.76% (area: 0.105 cm<sup>2</sup>) for 1.56 and 1.68 eV bandgap perovskites, respectively. Moreover, this approach is beneficial for the monolithic perovskite/silicon tandem solar cells based on fully textured surfaces of heterojunction (HJT) silicon bottom cells, affording PCEs of 31.56% (area: 1.07 cm<sup>2</sup>) and 26.57% (area: 20.06 cm<sup>2</sup>). All devices exhibit excellent long-term storage and thermal stability even under non-encapsulated conditions.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 36\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202504237\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202504237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于咔唑的自组装单层(SAMs)通常被用作倒置钙钛矿太阳能电池(PSCs)中的单组分空穴传输层(HTL),但在溶液中容易π‐π堆积和自聚集,因此与顶部钙钛矿层的锚定能力较差。在此,我们通过将具有多个锚点的非平面分子3,3‐(4‐氨基‐4H‐1,2,4‐三唑‐3,5‐二基)‐二苯并酸(ABT)与常用的Me‐4PACz SAM混合,开发了一种协同SAM (syn‐SAM)策略。这两种组分的共存利用π - π相互作用和氢键来减轻聚集效应,提供致密和均匀的SAM,从而增强钙钛矿埋藏界面的锚定并减轻界面电荷重组。ABT的掺入进一步有助于减轻钙钛矿薄膜中的拉伸应变。此外,该策略提供了多设备兼容性的优势。基于syn - SAM的单结冠军倒置PSC器件在1.56 eV和1.68 eV带隙钙钛矿上的功率转换效率(pce)分别为25.75%(认证25.45%)和22.76%(面积:0.105 cm2)。此外,该方法有利于基于异质结(HJT)硅底电池的全纹理表面的单片钙钛矿/硅串联太阳能电池,pce分别为31.56%(面积:1.07 cm2)和26.57%(面积:20.06 cm2)。所有器件即使在非封装条件下也表现出优异的长期储存和热稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Self-Assembled Monolayers Reinforce Buried Interface Anchoring for High-Efficiency Tandem Perovskite Solar Cells

Synergistic Self-Assembled Monolayers Reinforce Buried Interface Anchoring for High-Efficiency Tandem Perovskite Solar Cells

Carbazole-based self-assembled monolayers (SAMs) have been commonly used as a single-component hole transport layer (HTL) in inverted perovskite solar cells (PSCs), but suffer from facile π-π stacking and self-aggregations in solution and consequently poor anchoring ability with the atop perovskite layer. Herein, we developed a synergistic SAM (syn-SAM) strategy through blending a non-planar molecule 3,3-(4-amino-4H-1,2,4-triazole-3,5-diyl)-dibenzo acid (ABT) bearing multiple anchoring sites with the commonly used Me-4PACz SAM. The coexistence of these two components leverages π-π interactions and hydrogen bonding to mitigate aggregation effects, affording dense and uniform SAM, thereby enhancing anchoring at the perovskite buried interface and alleviating interfacial charge recombination. ABT incorporation further helps to mitigating tensile strain in perovskite film. Additionally, this strategy offers advantages of multi-device compatibility. The single-junction champion inverted PSC devices based on syn-SAM deliver power conversion efficiencies (PCEs) of 25.75% (certified 25.45%) and 22.76% (area: 0.105 cm2) for 1.56 and 1.68 eV bandgap perovskites, respectively. Moreover, this approach is beneficial for the monolithic perovskite/silicon tandem solar cells based on fully textured surfaces of heterojunction (HJT) silicon bottom cells, affording PCEs of 31.56% (area: 1.07 cm2) and 26.57% (area: 20.06 cm2). All devices exhibit excellent long-term storage and thermal stability even under non-encapsulated conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信