双功能有机添加剂通过溶剂化和界面调节实现稳定的锌阳极

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Saba Hazoor, Yuan Tang, Ruihao Luo, Muhammad Sajid, Yahan Meng, Mohsin Ali, Nawab Ali Khan, Dongyang Shen, Touqeer Ahmad, Aoun Raza, Xingxing Li, Wei Chen
{"title":"双功能有机添加剂通过溶剂化和界面调节实现稳定的锌阳极","authors":"Saba Hazoor, Yuan Tang, Ruihao Luo, Muhammad Sajid, Yahan Meng, Mohsin Ali, Nawab Ali Khan, Dongyang Shen, Touqeer Ahmad, Aoun Raza, Xingxing Li, Wei Chen","doi":"10.1002/adfm.202510936","DOIUrl":null,"url":null,"abstract":"The stability of Zn anode in aqueous Zn‐ion batteries (AZIBs) is severely compromised by dendrite growth, side reactions, and hydrogen evolution reactions (HER), resulting in poor cycling performance and low Coulombic efficiency (CE). Herein, a dual‐functional organic additive (DFOA) is introduced in the electrolyte to simultaneously modulate Zn<jats:sup>2+</jats:sup> solvation and Zn‐electrolyte interphase for high‐performance AZIBs. Spectroscopic analysis and density functional theory calculations reveal that succinic anhydride (SA), as a representative DFOA, weakens Zn<jats:sup>2+</jats:sup>–H<jats:sub>2</jats:sub>O interactions and strengthens Zn<jats:sup>2+</jats:sup>–succinate anion coordination by partially replacing H<jats:sub>2</jats:sub>O molecules in Zn<jats:sup>2+</jats:sup> solvation shell, thereby reducing desolvation energy and suppressing HER and corrosion. Succinate anions derived from DFOA preferentially adsorb onto the Zn surface and promote the formation of a stable solid–electrolyte interphase (SEI). As a result, Zn||Zn symmetric cells exhibit prolonged cycling stability exceeding 7100 h at 1 mAh cm<jats:sup>−2</jats:sup>, while Zn||Cu asymmetric cells maintain highly stable plating/stripping with an excellent CE of 99.7% over 6300 cycles. Furthermore, the Zn||NH<jats:sub>4</jats:sub>V<jats:sub>4</jats:sub>O<jats:sub>10</jats:sub> (NVO) full cells with DFOA demonstrate 99.9% average CE (ACE) and retain 86% of their capacity after 3000 cycles. This work identifies an effective and practical DFOA strategy for stabilizing Zn anodes, offering a viable route toward high‐performance and long‐life aqueous Zn‐ion batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"740 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling Stable Zn Anodes Through Solvation and Interphase Regulation by Dual‐Functional Organic Additives\",\"authors\":\"Saba Hazoor, Yuan Tang, Ruihao Luo, Muhammad Sajid, Yahan Meng, Mohsin Ali, Nawab Ali Khan, Dongyang Shen, Touqeer Ahmad, Aoun Raza, Xingxing Li, Wei Chen\",\"doi\":\"10.1002/adfm.202510936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability of Zn anode in aqueous Zn‐ion batteries (AZIBs) is severely compromised by dendrite growth, side reactions, and hydrogen evolution reactions (HER), resulting in poor cycling performance and low Coulombic efficiency (CE). Herein, a dual‐functional organic additive (DFOA) is introduced in the electrolyte to simultaneously modulate Zn<jats:sup>2+</jats:sup> solvation and Zn‐electrolyte interphase for high‐performance AZIBs. Spectroscopic analysis and density functional theory calculations reveal that succinic anhydride (SA), as a representative DFOA, weakens Zn<jats:sup>2+</jats:sup>–H<jats:sub>2</jats:sub>O interactions and strengthens Zn<jats:sup>2+</jats:sup>–succinate anion coordination by partially replacing H<jats:sub>2</jats:sub>O molecules in Zn<jats:sup>2+</jats:sup> solvation shell, thereby reducing desolvation energy and suppressing HER and corrosion. Succinate anions derived from DFOA preferentially adsorb onto the Zn surface and promote the formation of a stable solid–electrolyte interphase (SEI). As a result, Zn||Zn symmetric cells exhibit prolonged cycling stability exceeding 7100 h at 1 mAh cm<jats:sup>−2</jats:sup>, while Zn||Cu asymmetric cells maintain highly stable plating/stripping with an excellent CE of 99.7% over 6300 cycles. Furthermore, the Zn||NH<jats:sub>4</jats:sub>V<jats:sub>4</jats:sub>O<jats:sub>10</jats:sub> (NVO) full cells with DFOA demonstrate 99.9% average CE (ACE) and retain 86% of their capacity after 3000 cycles. This work identifies an effective and practical DFOA strategy for stabilizing Zn anodes, offering a viable route toward high‐performance and long‐life aqueous Zn‐ion batteries.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"740 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202510936\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202510936","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水溶液锌离子电池(AZIBs)中锌阳极的稳定性受到枝晶生长、副反应和析氢反应(HER)的严重影响,导致循环性能差和库仑效率(CE)低。本文在电解质中引入双功能有机添加剂(DFOA),以同时调节Zn2+溶剂化和锌电解质界面相,制备高性能azib。光谱分析和密度泛函理论计算表明,琥珀酸酐(SA)作为典型的DFOA,通过部分取代Zn2+溶剂化壳层中的H2O分子,减弱Zn2+ -H2O相互作用,增强Zn2+ -琥珀酸阴离子配位,从而降低脱溶能,抑制HER和腐蚀。DFOA衍生的琥珀酸阴离子优先吸附在Zn表面,促进了稳定固-电解质界面相(SEI)的形成。结果表明,Zn||Zn对称电池在1mah cm−2下表现出超过7100 h的长周期稳定性,而Zn||Cu不对称电池在6300次循环中保持了99.7%的优异CE。此外,含有DFOA的Zn b| nh4v4010 (NVO)电池在3000次循环后平均CE (ACE)为99.9%,容量保持率为86%。这项工作确定了一种有效和实用的DFOA策略来稳定锌阳极,为高性能和长寿命的水性锌离子电池提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Stable Zn Anodes Through Solvation and Interphase Regulation by Dual‐Functional Organic Additives
The stability of Zn anode in aqueous Zn‐ion batteries (AZIBs) is severely compromised by dendrite growth, side reactions, and hydrogen evolution reactions (HER), resulting in poor cycling performance and low Coulombic efficiency (CE). Herein, a dual‐functional organic additive (DFOA) is introduced in the electrolyte to simultaneously modulate Zn2+ solvation and Zn‐electrolyte interphase for high‐performance AZIBs. Spectroscopic analysis and density functional theory calculations reveal that succinic anhydride (SA), as a representative DFOA, weakens Zn2+–H2O interactions and strengthens Zn2+–succinate anion coordination by partially replacing H2O molecules in Zn2+ solvation shell, thereby reducing desolvation energy and suppressing HER and corrosion. Succinate anions derived from DFOA preferentially adsorb onto the Zn surface and promote the formation of a stable solid–electrolyte interphase (SEI). As a result, Zn||Zn symmetric cells exhibit prolonged cycling stability exceeding 7100 h at 1 mAh cm−2, while Zn||Cu asymmetric cells maintain highly stable plating/stripping with an excellent CE of 99.7% over 6300 cycles. Furthermore, the Zn||NH4V4O10 (NVO) full cells with DFOA demonstrate 99.9% average CE (ACE) and retain 86% of their capacity after 3000 cycles. This work identifies an effective and practical DFOA strategy for stabilizing Zn anodes, offering a viable route toward high‐performance and long‐life aqueous Zn‐ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信