单晶富锂锰基阴极稳定循环的深表面工程

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cheng Yang, Jiawei Luo, Jingchao Zhang, Yan Cheng, Hui Wang, Yunchen Ge, Qilin Tong, Jiali Tong, Rui Liu, Wei‐Di Liu, Yanan Chen, Zhaozhe Yu
{"title":"单晶富锂锰基阴极稳定循环的深表面工程","authors":"Cheng Yang, Jiawei Luo, Jingchao Zhang, Yan Cheng, Hui Wang, Yunchen Ge, Qilin Tong, Jiali Tong, Rui Liu, Wei‐Di Liu, Yanan Chen, Zhaozhe Yu","doi":"10.1002/adfm.202511737","DOIUrl":null,"url":null,"abstract":"Single‐crystal Li‐rich Mn‐based cathode materials (SLRMs) are promising for high‐energy lithium‐ion batteries due to their structural robustness. However, interfacial instability under high voltage triggers structural collapse and rapid capacity fading, hindering practical applications. Herein, an innovative strategy is proposed to deeply enhance the surface stability of SLRMs by constructing an Al<jats:sup>3+</jats:sup>‐reinforced spinel shallow surface structure and an Al<jats:sup>3+</jats:sup> gradient‐doped layered subsurface structure in single‐crystal Li<jats:sub>1.2</jats:sub>Mn<jats:sub>0.54</jats:sub>Ni<jats:sub>0.13</jats:sub>Co<jats:sub>0.13</jats:sub>O<jats:sub>2</jats:sub>. This composite structure effectively protects reactive oxygen species from electrolyte attack, mitigating capacity fading caused by interfacial side reactions. Theoretical calculations reveal that the oxygen vacancy formation energy of the Al<jats:sup>3+</jats:sup>‐reinforced spinel shallow surface structure increases from 4.21 to 5.40 eV, while that of the Al<jats:sup>3+</jats:sup>‐doped layered subsurface structure rises from 3.88 to 4.05 eV. Such enhancedoxygen vacancy formation energy effectively suppressed irreversible oxygen release and phase transitions, thereby strengthening the interfacial stability of SLRMs. The modified SLRMs deliver a discharge capacity of 232 mAh g<jats:sup>−1</jats:sup> at 1 C, with only 5% capacity loss after 200 cycles. This study resolves interfacial degradation in SLRMs via atomic‐level tailored deep surface engineering, establishing a blueprint for designing cathode materials with structural robustness.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"51 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Surface Engineering Toward Stable Cycling of Single‐Crystal Li‐rich Mn‐Based Cathode\",\"authors\":\"Cheng Yang, Jiawei Luo, Jingchao Zhang, Yan Cheng, Hui Wang, Yunchen Ge, Qilin Tong, Jiali Tong, Rui Liu, Wei‐Di Liu, Yanan Chen, Zhaozhe Yu\",\"doi\":\"10.1002/adfm.202511737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single‐crystal Li‐rich Mn‐based cathode materials (SLRMs) are promising for high‐energy lithium‐ion batteries due to their structural robustness. However, interfacial instability under high voltage triggers structural collapse and rapid capacity fading, hindering practical applications. Herein, an innovative strategy is proposed to deeply enhance the surface stability of SLRMs by constructing an Al<jats:sup>3+</jats:sup>‐reinforced spinel shallow surface structure and an Al<jats:sup>3+</jats:sup> gradient‐doped layered subsurface structure in single‐crystal Li<jats:sub>1.2</jats:sub>Mn<jats:sub>0.54</jats:sub>Ni<jats:sub>0.13</jats:sub>Co<jats:sub>0.13</jats:sub>O<jats:sub>2</jats:sub>. This composite structure effectively protects reactive oxygen species from electrolyte attack, mitigating capacity fading caused by interfacial side reactions. Theoretical calculations reveal that the oxygen vacancy formation energy of the Al<jats:sup>3+</jats:sup>‐reinforced spinel shallow surface structure increases from 4.21 to 5.40 eV, while that of the Al<jats:sup>3+</jats:sup>‐doped layered subsurface structure rises from 3.88 to 4.05 eV. Such enhancedoxygen vacancy formation energy effectively suppressed irreversible oxygen release and phase transitions, thereby strengthening the interfacial stability of SLRMs. The modified SLRMs deliver a discharge capacity of 232 mAh g<jats:sup>−1</jats:sup> at 1 C, with only 5% capacity loss after 200 cycles. This study resolves interfacial degradation in SLRMs via atomic‐level tailored deep surface engineering, establishing a blueprint for designing cathode materials with structural robustness.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202511737\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511737","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单晶富锂锰基正极材料(slrm)由于其结构的坚固性,在高能锂离子电池中具有广阔的应用前景。然而,界面在高压下的不稳定性会引发结构崩溃和容量快速衰减,阻碍了实际应用。本文提出了一种创新的策略,通过在单晶Li1.2Mn0.54Ni0.13Co0.13O2中构建Al3+增强尖晶石浅表面结构和Al3+梯度掺杂层状亚表面结构来深度增强SLRMs的表面稳定性。这种复合结构有效地保护了活性氧不受电解质的攻击,减轻了界面副反应引起的容量衰退。理论计算表明,Al3+增强尖晶石浅表面结构的氧空位形成能从4.21 eV增加到5.40 eV,而Al3+掺杂层状亚表面结构的氧空位形成能从3.88 eV增加到4.05 eV。这种氧空位形成能的增强有效地抑制了不可逆的氧释放和相变,从而增强了slrm的界面稳定性。改进的slrm在1c下的放电容量为232 mAh g−1,在200次循环后只有5%的容量损失。本研究通过原子级定制深表面工程解决了slrm中的界面退化问题,为设计具有结构稳健性的阴极材料建立了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Surface Engineering Toward Stable Cycling of Single‐Crystal Li‐rich Mn‐Based Cathode
Single‐crystal Li‐rich Mn‐based cathode materials (SLRMs) are promising for high‐energy lithium‐ion batteries due to their structural robustness. However, interfacial instability under high voltage triggers structural collapse and rapid capacity fading, hindering practical applications. Herein, an innovative strategy is proposed to deeply enhance the surface stability of SLRMs by constructing an Al3+‐reinforced spinel shallow surface structure and an Al3+ gradient‐doped layered subsurface structure in single‐crystal Li1.2Mn0.54Ni0.13Co0.13O2. This composite structure effectively protects reactive oxygen species from electrolyte attack, mitigating capacity fading caused by interfacial side reactions. Theoretical calculations reveal that the oxygen vacancy formation energy of the Al3+‐reinforced spinel shallow surface structure increases from 4.21 to 5.40 eV, while that of the Al3+‐doped layered subsurface structure rises from 3.88 to 4.05 eV. Such enhancedoxygen vacancy formation energy effectively suppressed irreversible oxygen release and phase transitions, thereby strengthening the interfacial stability of SLRMs. The modified SLRMs deliver a discharge capacity of 232 mAh g−1 at 1 C, with only 5% capacity loss after 200 cycles. This study resolves interfacial degradation in SLRMs via atomic‐level tailored deep surface engineering, establishing a blueprint for designing cathode materials with structural robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信