一种具有片上学习功能的神经形态处理器,用于超越cmos器件集成

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hugh Greatorex, Ole Richter, Michele Mastella, Madison Cotteret, Philipp Klein, Maxime Fabre, Arianna Rubino, Willian Soares Girão, Junren Chen, Martin Ziegler, Laura Bégon-Lours, Giacomo Indiveri, Elisabetta Chicca
{"title":"一种具有片上学习功能的神经形态处理器,用于超越cmos器件集成","authors":"Hugh Greatorex, Ole Richter, Michele Mastella, Madison Cotteret, Philipp Klein, Maxime Fabre, Arianna Rubino, Willian Soares Girão, Junren Chen, Martin Ziegler, Laura Bégon-Lours, Giacomo Indiveri, Elisabetta Chicca","doi":"10.1038/s41467-025-61576-6","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in memory technologies, devices, and materials have shown great potential for integration into neuromorphic electronic systems. However, a significant gap remains between the development of these materials and the realization of large-scale, fully functional systems. One key challenge is determining which devices and materials are best suited for specific functions and how they can be paired with complementary metal-oxide-semiconductor circuitry. To address this, we present a mixed-signal neuromorphic architecture designed to explore the integration of on-chip learning circuits and novel two- and three-terminal devices. The chip serves as a platform to bridge the gap between silicon-based neuromorphic computation and the latest advancements in emerging devices. In this paper, we demonstrate the readiness of the architecture for device integration through comprehensive measurements and simulations. The processor provides a practical system for testing bio-inspired learning algorithms alongside emerging devices, establishing a tangible link between brain-inspired computation and cutting-edge device research.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"57 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neuromorphic processor with on-chip learning for beyond-CMOS device integration\",\"authors\":\"Hugh Greatorex, Ole Richter, Michele Mastella, Madison Cotteret, Philipp Klein, Maxime Fabre, Arianna Rubino, Willian Soares Girão, Junren Chen, Martin Ziegler, Laura Bégon-Lours, Giacomo Indiveri, Elisabetta Chicca\",\"doi\":\"10.1038/s41467-025-61576-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advances in memory technologies, devices, and materials have shown great potential for integration into neuromorphic electronic systems. However, a significant gap remains between the development of these materials and the realization of large-scale, fully functional systems. One key challenge is determining which devices and materials are best suited for specific functions and how they can be paired with complementary metal-oxide-semiconductor circuitry. To address this, we present a mixed-signal neuromorphic architecture designed to explore the integration of on-chip learning circuits and novel two- and three-terminal devices. The chip serves as a platform to bridge the gap between silicon-based neuromorphic computation and the latest advancements in emerging devices. In this paper, we demonstrate the readiness of the architecture for device integration through comprehensive measurements and simulations. The processor provides a practical system for testing bio-inspired learning algorithms alongside emerging devices, establishing a tangible link between brain-inspired computation and cutting-edge device research.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61576-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61576-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

记忆技术、器件和材料的最新进展显示了集成到神经形态电子系统中的巨大潜力。然而,在这些材料的发展和大规模、全功能系统的实现之间仍然存在着巨大的差距。一个关键的挑战是确定哪些设备和材料最适合特定的功能,以及如何将它们与互补的金属氧化物半导体电路配对。为了解决这个问题,我们提出了一种混合信号神经形态架构,旨在探索片上学习电路和新型二端和三端设备的集成。该芯片作为一个平台,弥合了硅基神经形态计算与新兴设备的最新进展之间的差距。在本文中,我们通过全面的测量和仿真证明了该架构对器件集成的准备程度。该处理器为测试生物启发学习算法和新兴设备提供了一个实用的系统,在大脑启发计算和尖端设备研究之间建立了切实的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A neuromorphic processor with on-chip learning for beyond-CMOS device integration

A neuromorphic processor with on-chip learning for beyond-CMOS device integration

Recent advances in memory technologies, devices, and materials have shown great potential for integration into neuromorphic electronic systems. However, a significant gap remains between the development of these materials and the realization of large-scale, fully functional systems. One key challenge is determining which devices and materials are best suited for specific functions and how they can be paired with complementary metal-oxide-semiconductor circuitry. To address this, we present a mixed-signal neuromorphic architecture designed to explore the integration of on-chip learning circuits and novel two- and three-terminal devices. The chip serves as a platform to bridge the gap between silicon-based neuromorphic computation and the latest advancements in emerging devices. In this paper, we demonstrate the readiness of the architecture for device integration through comprehensive measurements and simulations. The processor provides a practical system for testing bio-inspired learning algorithms alongside emerging devices, establishing a tangible link between brain-inspired computation and cutting-edge device research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信