Sophia Long, Lisa Lopez, Bethan Ford, François Balembois, Riccardo Montis, Wern Ng, Daan M Arroo, Neil McN Alford, Hamdi Torun, Juna Sathian
{"title":"led泵浦室温固态脉泽。","authors":"Sophia Long, Lisa Lopez, Bethan Ford, François Balembois, Riccardo Montis, Wern Ng, Daan M Arroo, Neil McN Alford, Hamdi Torun, Juna Sathian","doi":"10.1038/s44172-025-00455-w","DOIUrl":null,"url":null,"abstract":"<p><p>Room-temperature MASERs (Microwave Amplification by Stimulated Emission of Radiation) amplify electromagnetic waves at microwave frequencies with minimal noise. We demonstrate a cost-effective LED-pumped maser using pentacene-doped para-terphenyl as the gain medium. Here, we show that LED light, which is brightness-enhanced and guided via a cerium-doped yttrium aluminium garnet luminescent concentrator, achieves persistent maser emission at 1.45 GHz with a duration of 200 µs and a microwave output power of 0.014 mW, surpassing previous non-laser pumped systems. Operating at low voltage, the LED-pumped maser ensures safety, reduced costs, and simple integration. Potential applications include sensitive magnetic resonance imaging, portable atomic clocks, quantum technologies, and enhanced deep-space radio astronomy.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"122"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241473/pdf/","citationCount":"0","resultStr":"{\"title\":\"LED-pumped room-temperature solid-state maser.\",\"authors\":\"Sophia Long, Lisa Lopez, Bethan Ford, François Balembois, Riccardo Montis, Wern Ng, Daan M Arroo, Neil McN Alford, Hamdi Torun, Juna Sathian\",\"doi\":\"10.1038/s44172-025-00455-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Room-temperature MASERs (Microwave Amplification by Stimulated Emission of Radiation) amplify electromagnetic waves at microwave frequencies with minimal noise. We demonstrate a cost-effective LED-pumped maser using pentacene-doped para-terphenyl as the gain medium. Here, we show that LED light, which is brightness-enhanced and guided via a cerium-doped yttrium aluminium garnet luminescent concentrator, achieves persistent maser emission at 1.45 GHz with a duration of 200 µs and a microwave output power of 0.014 mW, surpassing previous non-laser pumped systems. Operating at low voltage, the LED-pumped maser ensures safety, reduced costs, and simple integration. Potential applications include sensitive magnetic resonance imaging, portable atomic clocks, quantum technologies, and enhanced deep-space radio astronomy.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00455-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00455-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Room-temperature MASERs (Microwave Amplification by Stimulated Emission of Radiation) amplify electromagnetic waves at microwave frequencies with minimal noise. We demonstrate a cost-effective LED-pumped maser using pentacene-doped para-terphenyl as the gain medium. Here, we show that LED light, which is brightness-enhanced and guided via a cerium-doped yttrium aluminium garnet luminescent concentrator, achieves persistent maser emission at 1.45 GHz with a duration of 200 µs and a microwave output power of 0.014 mW, surpassing previous non-laser pumped systems. Operating at low voltage, the LED-pumped maser ensures safety, reduced costs, and simple integration. Potential applications include sensitive magnetic resonance imaging, portable atomic clocks, quantum technologies, and enhanced deep-space radio astronomy.