Lu Shan, Kevin J Verstrepen, Qinhong Wang, Zongjie Dai
{"title":"用于多重基因组操作的同源重组精通脂溶耶氏菌底盘。","authors":"Lu Shan, Kevin J Verstrepen, Qinhong Wang, Zongjie Dai","doi":"10.1016/j.tibtech.2025.06.009","DOIUrl":null,"url":null,"abstract":"<p><p>Homologous recombination (HR) greatly facilitates precise genome editing. However, most organisms prefer error-prone non-homologous end joining (NHEJ) for DNA double-strand break (DSB) repair. Here, the NHEJ-proficient Yarrowia lipolytica was transformed into a HR-proficient strain by systematic engineering of recombination machinery, regulating the multiinvasion-induced rearrangement (MIR) process, and expressing cognate single-stranded DNA-annealing protein (SSAP)-single-stranded DNA-binding protein (SSB) pairs. These strategies improved HR efficiency by 38.9, 1.6, and 1.2-fold compared with the NHEJ-deficient strain for multifragment multisite integration, and multi- and single-fragment single-site integration, respectively. Moreover, HR efficiency remained high at 58% even with 50-base pair (bp) homology arms (HAs) and reached 11% for simultaneously integrating two mega-DNA fragments (18.0 kb and 13.5 kb) at two genome sites. This strain also enabled simultaneous editing, repression, and activation of multiple genes, while cellular robustness parameters showed marked increases over the NHEJ-deficient strain. Our work provides a HR-proficient Y. lipolytica chassis allowing efficient and precise genome editing of this increasingly important microbe.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"2627-2645"},"PeriodicalIF":14.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A homologous recombination-proficient Yarrowia lipolytica chassis for multiplex genome manipulation.\",\"authors\":\"Lu Shan, Kevin J Verstrepen, Qinhong Wang, Zongjie Dai\",\"doi\":\"10.1016/j.tibtech.2025.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Homologous recombination (HR) greatly facilitates precise genome editing. However, most organisms prefer error-prone non-homologous end joining (NHEJ) for DNA double-strand break (DSB) repair. Here, the NHEJ-proficient Yarrowia lipolytica was transformed into a HR-proficient strain by systematic engineering of recombination machinery, regulating the multiinvasion-induced rearrangement (MIR) process, and expressing cognate single-stranded DNA-annealing protein (SSAP)-single-stranded DNA-binding protein (SSB) pairs. These strategies improved HR efficiency by 38.9, 1.6, and 1.2-fold compared with the NHEJ-deficient strain for multifragment multisite integration, and multi- and single-fragment single-site integration, respectively. Moreover, HR efficiency remained high at 58% even with 50-base pair (bp) homology arms (HAs) and reached 11% for simultaneously integrating two mega-DNA fragments (18.0 kb and 13.5 kb) at two genome sites. This strain also enabled simultaneous editing, repression, and activation of multiple genes, while cellular robustness parameters showed marked increases over the NHEJ-deficient strain. Our work provides a HR-proficient Y. lipolytica chassis allowing efficient and precise genome editing of this increasingly important microbe.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":\" \",\"pages\":\"2627-2645\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2025.06.009\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.06.009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A homologous recombination-proficient Yarrowia lipolytica chassis for multiplex genome manipulation.
Homologous recombination (HR) greatly facilitates precise genome editing. However, most organisms prefer error-prone non-homologous end joining (NHEJ) for DNA double-strand break (DSB) repair. Here, the NHEJ-proficient Yarrowia lipolytica was transformed into a HR-proficient strain by systematic engineering of recombination machinery, regulating the multiinvasion-induced rearrangement (MIR) process, and expressing cognate single-stranded DNA-annealing protein (SSAP)-single-stranded DNA-binding protein (SSB) pairs. These strategies improved HR efficiency by 38.9, 1.6, and 1.2-fold compared with the NHEJ-deficient strain for multifragment multisite integration, and multi- and single-fragment single-site integration, respectively. Moreover, HR efficiency remained high at 58% even with 50-base pair (bp) homology arms (HAs) and reached 11% for simultaneously integrating two mega-DNA fragments (18.0 kb and 13.5 kb) at two genome sites. This strain also enabled simultaneous editing, repression, and activation of multiple genes, while cellular robustness parameters showed marked increases over the NHEJ-deficient strain. Our work provides a HR-proficient Y. lipolytica chassis allowing efficient and precise genome editing of this increasingly important microbe.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).