光生物调节研究进展:对间充质干细胞及其旁分泌因子的影响。

IF 4.2 3区 医学 Q2 CELL & TISSUE ENGINEERING
Zhuojun Shi, Sining Chen, Wenkai Cai, Wei Chen, Yong Tang
{"title":"光生物调节研究进展:对间充质干细胞及其旁分泌因子的影响。","authors":"Zhuojun Shi, Sining Chen, Wenkai Cai, Wei Chen, Yong Tang","doi":"10.1007/s12015-025-10934-4","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) have emerged as pivotal tools in biomedical engineering, owing to their remarkable capacity for tissue repair and regeneration. Photobiomodulation (PBM), a non-invasive and safe physical stimulation technique, has demonstrated significant potential in enhancing MSCs' cellular activity, osteogenic differentiation, and therapeutic efficacy. Despite these promising findings, several challenges hinder the clinical translation of PBM, including the optimization of irradiation parameters to maximize therapeutic outcomes and the standardization of protocols to ensure reproducibility and reliability. This review explores the current advancements in PBM technology and its application in MSC research, with a focus on understanding its mechanisms and therapeutic potential. By delving into the fine-tuning of PBM parameters, including cell factor secretion dynamics, signal transduction pathways, and cell-cell interaction networks, we aim to illuminate how PBM modulates the paracrine functions of MSCs. Additionally, the integration of PBM with biomaterials and engineering technologies presents exciting opportunities for bone tissue engineering and cell therapy. Future research should focus on uncovering the mechanisms by which PBM influences MSC behavior, optimizing its therapeutic parameters, and evaluating its safety and long-term benefits. Such efforts will pave the way for PBM's seamless integration into clinical applications, including complex bone defect repair, thereby advancing its role in precision medicine.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Photobiomodulation: Effects on Mesenchymal Stem Cells and their Paracrine Factors.\",\"authors\":\"Zhuojun Shi, Sining Chen, Wenkai Cai, Wei Chen, Yong Tang\",\"doi\":\"10.1007/s12015-025-10934-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells (MSCs) have emerged as pivotal tools in biomedical engineering, owing to their remarkable capacity for tissue repair and regeneration. Photobiomodulation (PBM), a non-invasive and safe physical stimulation technique, has demonstrated significant potential in enhancing MSCs' cellular activity, osteogenic differentiation, and therapeutic efficacy. Despite these promising findings, several challenges hinder the clinical translation of PBM, including the optimization of irradiation parameters to maximize therapeutic outcomes and the standardization of protocols to ensure reproducibility and reliability. This review explores the current advancements in PBM technology and its application in MSC research, with a focus on understanding its mechanisms and therapeutic potential. By delving into the fine-tuning of PBM parameters, including cell factor secretion dynamics, signal transduction pathways, and cell-cell interaction networks, we aim to illuminate how PBM modulates the paracrine functions of MSCs. Additionally, the integration of PBM with biomaterials and engineering technologies presents exciting opportunities for bone tissue engineering and cell therapy. Future research should focus on uncovering the mechanisms by which PBM influences MSC behavior, optimizing its therapeutic parameters, and evaluating its safety and long-term benefits. Such efforts will pave the way for PBM's seamless integration into clinical applications, including complex bone defect repair, thereby advancing its role in precision medicine.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-025-10934-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-025-10934-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

间充质干细胞(MSCs)由于具有显著的组织修复和再生能力,已成为生物医学工程中的关键工具。光生物调节(PBM)是一种无创、安全的物理刺激技术,在增强间充质干细胞的细胞活性、成骨分化和治疗效果方面具有重要的潜力。尽管有这些有希望的发现,一些挑战阻碍了PBM的临床转化,包括优化照射参数以最大化治疗结果和标准化方案以确保可重复性和可靠性。本文综述了PBM技术的最新进展及其在MSC研究中的应用,重点了解其机制和治疗潜力。通过深入研究PBM参数的微调,包括细胞因子分泌动力学、信号转导途径和细胞-细胞相互作用网络,我们旨在阐明PBM如何调节MSCs的旁分泌功能。此外,PBM与生物材料和工程技术的结合为骨组织工程和细胞治疗提供了令人兴奋的机会。未来的研究应侧重于揭示PBM影响MSC行为的机制,优化其治疗参数,并评估其安全性和长期效益。这些努力将为PBM与临床应用的无缝整合铺平道路,包括复杂的骨缺损修复,从而推进其在精准医学中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Photobiomodulation: Effects on Mesenchymal Stem Cells and their Paracrine Factors.

Mesenchymal stem cells (MSCs) have emerged as pivotal tools in biomedical engineering, owing to their remarkable capacity for tissue repair and regeneration. Photobiomodulation (PBM), a non-invasive and safe physical stimulation technique, has demonstrated significant potential in enhancing MSCs' cellular activity, osteogenic differentiation, and therapeutic efficacy. Despite these promising findings, several challenges hinder the clinical translation of PBM, including the optimization of irradiation parameters to maximize therapeutic outcomes and the standardization of protocols to ensure reproducibility and reliability. This review explores the current advancements in PBM technology and its application in MSC research, with a focus on understanding its mechanisms and therapeutic potential. By delving into the fine-tuning of PBM parameters, including cell factor secretion dynamics, signal transduction pathways, and cell-cell interaction networks, we aim to illuminate how PBM modulates the paracrine functions of MSCs. Additionally, the integration of PBM with biomaterials and engineering technologies presents exciting opportunities for bone tissue engineering and cell therapy. Future research should focus on uncovering the mechanisms by which PBM influences MSC behavior, optimizing its therapeutic parameters, and evaluating its safety and long-term benefits. Such efforts will pave the way for PBM's seamless integration into clinical applications, including complex bone defect repair, thereby advancing its role in precision medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reviews and Reports
Stem Cell Reviews and Reports 医学-细胞生物学
CiteScore
9.30
自引率
4.20%
发文量
0
审稿时长
3 months
期刊介绍: The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication: i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field. ii) full length and short reports presenting original experimental work. iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics. iv) papers focused on diseases of stem cells. v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale. vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research. vii) letters to the editor and correspondence. In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on: i) the role of adult stem cells in tissue regeneration; ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development; iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells; iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis; v) the role of stem cells in aging processes and cancerogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信