Yang Qing, Ailian Zhu, Ling He, Hujing Zhang, Xi Wang, Chunyan Xiao, Qiang Fu, Qin Song
{"title":"基于美洲大蠊甲壳素的负载Zn2+复合膜敷料能有效促进伤口愈合。","authors":"Yang Qing, Ailian Zhu, Ling He, Hujing Zhang, Xi Wang, Chunyan Xiao, Qiang Fu, Qin Song","doi":"10.1080/09205063.2025.2524871","DOIUrl":null,"url":null,"abstract":"<p><p>This study compared the application-specific benefits of PAC (<i>Periplaneta americana</i> chitin) and SC (Shrimp chitin) blended with PEG (Polyethylene Glycol) in innovative wound-dressing materials. By preparing SC/PEG and PAC/PEG porous blended membranes, it was found that PAC/PEG has better breathability, degradability. Based on this, we developed a Janus PAC/PEG@Zn0.3 composite film dressing for wound healing. After crosslinking PAC with PEG, a hydrophilic layer was formed through phase separation and selective dissolution, loaded with Zn<sup>2+</sup>, and combined with a hydrophobic PCL (Polycaprolactone) membrane using a simple coating technique. This composite film has the characteristics of being moist, breathable, and stretchable, and exhibits good biodegradability and compatibility. The addition of Zn<sup>2+</sup> enhanced the hemostatic and antibacterial properties of the film. The mouse wound healing experiment showed that the dressing promoted collagen deposition and capillary generation, accelerating wound healing. Overall, the Janus PAC/PEG@Zn0.3 composite film is a wound dressing with promising application prospects.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-29"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Janus-loaded Zn<sup>2+</sup> composite film dressing based on chitin from <i>Periplaneta americana</i> effectively promotes wound healing.\",\"authors\":\"Yang Qing, Ailian Zhu, Ling He, Hujing Zhang, Xi Wang, Chunyan Xiao, Qiang Fu, Qin Song\",\"doi\":\"10.1080/09205063.2025.2524871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study compared the application-specific benefits of PAC (<i>Periplaneta americana</i> chitin) and SC (Shrimp chitin) blended with PEG (Polyethylene Glycol) in innovative wound-dressing materials. By preparing SC/PEG and PAC/PEG porous blended membranes, it was found that PAC/PEG has better breathability, degradability. Based on this, we developed a Janus PAC/PEG@Zn0.3 composite film dressing for wound healing. After crosslinking PAC with PEG, a hydrophilic layer was formed through phase separation and selective dissolution, loaded with Zn<sup>2+</sup>, and combined with a hydrophobic PCL (Polycaprolactone) membrane using a simple coating technique. This composite film has the characteristics of being moist, breathable, and stretchable, and exhibits good biodegradability and compatibility. The addition of Zn<sup>2+</sup> enhanced the hemostatic and antibacterial properties of the film. The mouse wound healing experiment showed that the dressing promoted collagen deposition and capillary generation, accelerating wound healing. Overall, the Janus PAC/PEG@Zn0.3 composite film is a wound dressing with promising application prospects.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-29\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2524871\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2524871","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Janus-loaded Zn2+ composite film dressing based on chitin from Periplaneta americana effectively promotes wound healing.
This study compared the application-specific benefits of PAC (Periplaneta americana chitin) and SC (Shrimp chitin) blended with PEG (Polyethylene Glycol) in innovative wound-dressing materials. By preparing SC/PEG and PAC/PEG porous blended membranes, it was found that PAC/PEG has better breathability, degradability. Based on this, we developed a Janus PAC/PEG@Zn0.3 composite film dressing for wound healing. After crosslinking PAC with PEG, a hydrophilic layer was formed through phase separation and selective dissolution, loaded with Zn2+, and combined with a hydrophobic PCL (Polycaprolactone) membrane using a simple coating technique. This composite film has the characteristics of being moist, breathable, and stretchable, and exhibits good biodegradability and compatibility. The addition of Zn2+ enhanced the hemostatic and antibacterial properties of the film. The mouse wound healing experiment showed that the dressing promoted collagen deposition and capillary generation, accelerating wound healing. Overall, the Janus PAC/PEG@Zn0.3 composite film is a wound dressing with promising application prospects.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.