Victoria Ektnitphong, Beatriz R S Dias, Priscila C Campos, Michael U Shiloh
{"title":"福氏分枝杆菌肺部感染肺泡肺芯片模型的建立。","authors":"Victoria Ektnitphong, Beatriz R S Dias, Priscila C Campos, Michael U Shiloh","doi":"10.1242/dmm.052085","DOIUrl":null,"url":null,"abstract":"<p><p>Lung disease due to non-tuberculous mycobacteria (NTM) is rising in incidence. Although both two-dimensional cell culture and animal models exist for NTM infections, a major knowledge gap is the early responses of human alveolar and innate immune cells to NTM within the human alveolar microenvironment. Here, we describe the development of a humanized, three-dimensional, alveolus lung-on-a-chip (ALoC) model of Mycobacterium fortuitum lung infection that incorporates only primary human cells, such as pulmonary vascular endothelial cells, in a vascular channel, and type I and II alveolar cells and monocyte-derived macrophages in an alveolar channel along an air-liquid interface. M. fortuitum introduced into the alveolar channel primarily infected macrophages, with rare bacteria inside alveolar cells. Bulk RNA sequencing of infected chips revealed marked upregulation of transcripts for cytokines, chemokines and secreted protease inhibitors (SERPINs). Our results demonstrate how a humanized ALoC system can identify critical early immune and epithelial responses to M. fortuitum infection. We envision potential application of the ALoC to other NTM and in studies of new antibiotics.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An alveolus lung-on-a-chip model of Mycobacterium fortuitum lung infection.\",\"authors\":\"Victoria Ektnitphong, Beatriz R S Dias, Priscila C Campos, Michael U Shiloh\",\"doi\":\"10.1242/dmm.052085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung disease due to non-tuberculous mycobacteria (NTM) is rising in incidence. Although both two-dimensional cell culture and animal models exist for NTM infections, a major knowledge gap is the early responses of human alveolar and innate immune cells to NTM within the human alveolar microenvironment. Here, we describe the development of a humanized, three-dimensional, alveolus lung-on-a-chip (ALoC) model of Mycobacterium fortuitum lung infection that incorporates only primary human cells, such as pulmonary vascular endothelial cells, in a vascular channel, and type I and II alveolar cells and monocyte-derived macrophages in an alveolar channel along an air-liquid interface. M. fortuitum introduced into the alveolar channel primarily infected macrophages, with rare bacteria inside alveolar cells. Bulk RNA sequencing of infected chips revealed marked upregulation of transcripts for cytokines, chemokines and secreted protease inhibitors (SERPINs). Our results demonstrate how a humanized ALoC system can identify critical early immune and epithelial responses to M. fortuitum infection. We envision potential application of the ALoC to other NTM and in studies of new antibiotics.</p>\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.052085\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052085","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
An alveolus lung-on-a-chip model of Mycobacterium fortuitum lung infection.
Lung disease due to non-tuberculous mycobacteria (NTM) is rising in incidence. Although both two-dimensional cell culture and animal models exist for NTM infections, a major knowledge gap is the early responses of human alveolar and innate immune cells to NTM within the human alveolar microenvironment. Here, we describe the development of a humanized, three-dimensional, alveolus lung-on-a-chip (ALoC) model of Mycobacterium fortuitum lung infection that incorporates only primary human cells, such as pulmonary vascular endothelial cells, in a vascular channel, and type I and II alveolar cells and monocyte-derived macrophages in an alveolar channel along an air-liquid interface. M. fortuitum introduced into the alveolar channel primarily infected macrophages, with rare bacteria inside alveolar cells. Bulk RNA sequencing of infected chips revealed marked upregulation of transcripts for cytokines, chemokines and secreted protease inhibitors (SERPINs). Our results demonstrate how a humanized ALoC system can identify critical early immune and epithelial responses to M. fortuitum infection. We envision potential application of the ALoC to other NTM and in studies of new antibiotics.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.