{"title":"不同的肺腺癌相关微生物群通过LCIIAR-ISG15调控网络与炎症免疫景观和肿瘤细胞增殖相关","authors":"Shipu Liu, Zijian Zhang","doi":"10.2147/CMAR.S520098","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Emerging research emphasizes the critical role of local microbiota in shaping the tumor microenvironment (TME) and influencing cancer progression. Lung adenocarcinoma (LUAD) is distinguished by unique bacterial communities that appear to regulate immune responses, gene expression, and patient outcomes.</p><p><strong>Methods: </strong>We compiled microbiome profiles from several cancer types-including LUAD, lung squamous cell carcinoma (LUSC), breast carcinoma (BRCA), and thyroid carcinoma (THCA)-using public databases. Non-negative matrix factorization (NMF) was employed to categorize LUAD cases based on TME features, while DESeq2 was used to pinpoint bacterial taxa with differing abundance. Multi-omics networks were developed to integrate microbial, transcriptomic, and clinical data. For in vitro verification, we conducted siRNA-mediated knockdown of the long non-coding RNA LCIIAR and ISG15 in Lewis lung carcinoma cells, followed by proliferation assays.</p><p><strong>Results: </strong>In contrast to LUSC, BRCA, and THCA, LUAD exhibited distinct microbial populations, with notable enrichment of Cylindrospermopsis, Cyanothece, and Sulfolobus. NMF clustering identified two LUAD subtypes with differing prognoses. One longer survival cluster, marked by reduced bacterial presence and stronger antitumor immunity-reflected in stronger immune response, increased effector T cells activity, and greater immune cell infiltration. A competing endogenous RNA (ceRNA) network analysis established a link between LCIIAR and ISG15, both overexpressed in LUAD and associated with worse survival outcomes. Knockdown LCIIAR or ISG15 through siRNA significantly inhibited lung cancer cell proliferation, pointing to their roles in tumor growth and ceRNA-mediated regulation.</p><p><strong>Conclusion: </strong>LUAD features a distinctive microbiota that engages with inflammatory and ceRNA regulatory pathways. These observations underscore the value of targeting microbiome-influenced mechanisms, such as the LCIIAR-ISG15 axis, as a promising approach to enhance treatment outcomes in lung adenocarcinoma.</p>","PeriodicalId":9479,"journal":{"name":"Cancer Management and Research","volume":"17 ","pages":"1315-1328"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238177/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinct Lung Adenocarcinoma-Associated Microbiota Are Associated with Inflammatory Immune Landscapes and Tumor Cell Proliferation via LCIIAR-ISG15 Regulatory Networks.\",\"authors\":\"Shipu Liu, Zijian Zhang\",\"doi\":\"10.2147/CMAR.S520098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Emerging research emphasizes the critical role of local microbiota in shaping the tumor microenvironment (TME) and influencing cancer progression. Lung adenocarcinoma (LUAD) is distinguished by unique bacterial communities that appear to regulate immune responses, gene expression, and patient outcomes.</p><p><strong>Methods: </strong>We compiled microbiome profiles from several cancer types-including LUAD, lung squamous cell carcinoma (LUSC), breast carcinoma (BRCA), and thyroid carcinoma (THCA)-using public databases. Non-negative matrix factorization (NMF) was employed to categorize LUAD cases based on TME features, while DESeq2 was used to pinpoint bacterial taxa with differing abundance. Multi-omics networks were developed to integrate microbial, transcriptomic, and clinical data. For in vitro verification, we conducted siRNA-mediated knockdown of the long non-coding RNA LCIIAR and ISG15 in Lewis lung carcinoma cells, followed by proliferation assays.</p><p><strong>Results: </strong>In contrast to LUSC, BRCA, and THCA, LUAD exhibited distinct microbial populations, with notable enrichment of Cylindrospermopsis, Cyanothece, and Sulfolobus. NMF clustering identified two LUAD subtypes with differing prognoses. One longer survival cluster, marked by reduced bacterial presence and stronger antitumor immunity-reflected in stronger immune response, increased effector T cells activity, and greater immune cell infiltration. A competing endogenous RNA (ceRNA) network analysis established a link between LCIIAR and ISG15, both overexpressed in LUAD and associated with worse survival outcomes. Knockdown LCIIAR or ISG15 through siRNA significantly inhibited lung cancer cell proliferation, pointing to their roles in tumor growth and ceRNA-mediated regulation.</p><p><strong>Conclusion: </strong>LUAD features a distinctive microbiota that engages with inflammatory and ceRNA regulatory pathways. These observations underscore the value of targeting microbiome-influenced mechanisms, such as the LCIIAR-ISG15 axis, as a promising approach to enhance treatment outcomes in lung adenocarcinoma.</p>\",\"PeriodicalId\":9479,\"journal\":{\"name\":\"Cancer Management and Research\",\"volume\":\"17 \",\"pages\":\"1315-1328\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238177/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Management and Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/CMAR.S520098\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Management and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/CMAR.S520098","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Distinct Lung Adenocarcinoma-Associated Microbiota Are Associated with Inflammatory Immune Landscapes and Tumor Cell Proliferation via LCIIAR-ISG15 Regulatory Networks.
Introduction: Emerging research emphasizes the critical role of local microbiota in shaping the tumor microenvironment (TME) and influencing cancer progression. Lung adenocarcinoma (LUAD) is distinguished by unique bacterial communities that appear to regulate immune responses, gene expression, and patient outcomes.
Methods: We compiled microbiome profiles from several cancer types-including LUAD, lung squamous cell carcinoma (LUSC), breast carcinoma (BRCA), and thyroid carcinoma (THCA)-using public databases. Non-negative matrix factorization (NMF) was employed to categorize LUAD cases based on TME features, while DESeq2 was used to pinpoint bacterial taxa with differing abundance. Multi-omics networks were developed to integrate microbial, transcriptomic, and clinical data. For in vitro verification, we conducted siRNA-mediated knockdown of the long non-coding RNA LCIIAR and ISG15 in Lewis lung carcinoma cells, followed by proliferation assays.
Results: In contrast to LUSC, BRCA, and THCA, LUAD exhibited distinct microbial populations, with notable enrichment of Cylindrospermopsis, Cyanothece, and Sulfolobus. NMF clustering identified two LUAD subtypes with differing prognoses. One longer survival cluster, marked by reduced bacterial presence and stronger antitumor immunity-reflected in stronger immune response, increased effector T cells activity, and greater immune cell infiltration. A competing endogenous RNA (ceRNA) network analysis established a link between LCIIAR and ISG15, both overexpressed in LUAD and associated with worse survival outcomes. Knockdown LCIIAR or ISG15 through siRNA significantly inhibited lung cancer cell proliferation, pointing to their roles in tumor growth and ceRNA-mediated regulation.
Conclusion: LUAD features a distinctive microbiota that engages with inflammatory and ceRNA regulatory pathways. These observations underscore the value of targeting microbiome-influenced mechanisms, such as the LCIIAR-ISG15 axis, as a promising approach to enhance treatment outcomes in lung adenocarcinoma.
期刊介绍:
Cancer Management and Research is an international, peer reviewed, open access journal focusing on cancer research and the optimal use of preventative and integrated treatment interventions to achieve improved outcomes, enhanced survival, and quality of life for cancer patients. Specific topics covered in the journal include:
◦Epidemiology, detection and screening
◦Cellular research and biomarkers
◦Identification of biotargets and agents with novel mechanisms of action
◦Optimal clinical use of existing anticancer agents, including combination therapies
◦Radiation and surgery
◦Palliative care
◦Patient adherence, quality of life, satisfaction
The journal welcomes submitted papers covering original research, basic science, clinical & epidemiological studies, reviews & evaluations, guidelines, expert opinion and commentary, and case series that shed novel insights on a disease or disease subtype.