Niki Parenteau, Tori Hoehler, Alfonso Davila, Stephanie Getty, Graham Lau, Marc Neveu, Svetlana Shkolyar, David Des Marais, Andro Rios, Linda Jahnke, Leslie Bebout, Richard Quinn, Andrew Pohorille
{"title":"生命探测知识库:潜在生物特征的评估标准。","authors":"Niki Parenteau, Tori Hoehler, Alfonso Davila, Stephanie Getty, Graham Lau, Marc Neveu, Svetlana Shkolyar, David Des Marais, Andro Rios, Linda Jahnke, Leslie Bebout, Richard Quinn, Andrew Pohorille","doi":"10.1089/ast.2024.0104","DOIUrl":null,"url":null,"abstract":"<p><p>Astrobiology and the search for evidence of life beyond Earth are now key drivers for planetary science and astronomy missions. Efforts are underway to establish evaluative frameworks to interpret potential signs of life in returned data. However, there is a need for a \"before-the-fact\" system to assess mission science risk and the potential false negative and false positive results. The Life Detection Knowledge Base (LDKB) is a community-owned web tool that organizes the scientific literature and enables discourse and evaluation of potential biosignatures (defined to the same level of granularity) relative to a set of standard criteria. This article details the development of draft criteria and their utilization as an organizing basis for the LDKB and their vetting by the astrobiology community via two workshops. We report the incorporation of community feedback to generate a finalized set of criteria, which delineate contributing factors to the potential for false negative or false positive results in the search for evidence of life within and beyond our solar system.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life Detection Knowledge Base: Assessment Criteria for Potential Biosignatures.\",\"authors\":\"Niki Parenteau, Tori Hoehler, Alfonso Davila, Stephanie Getty, Graham Lau, Marc Neveu, Svetlana Shkolyar, David Des Marais, Andro Rios, Linda Jahnke, Leslie Bebout, Richard Quinn, Andrew Pohorille\",\"doi\":\"10.1089/ast.2024.0104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astrobiology and the search for evidence of life beyond Earth are now key drivers for planetary science and astronomy missions. Efforts are underway to establish evaluative frameworks to interpret potential signs of life in returned data. However, there is a need for a \\\"before-the-fact\\\" system to assess mission science risk and the potential false negative and false positive results. The Life Detection Knowledge Base (LDKB) is a community-owned web tool that organizes the scientific literature and enables discourse and evaluation of potential biosignatures (defined to the same level of granularity) relative to a set of standard criteria. This article details the development of draft criteria and their utilization as an organizing basis for the LDKB and their vetting by the astrobiology community via two workshops. We report the incorporation of community feedback to generate a finalized set of criteria, which delineate contributing factors to the potential for false negative or false positive results in the search for evidence of life within and beyond our solar system.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2024.0104\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0104","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Life Detection Knowledge Base: Assessment Criteria for Potential Biosignatures.
Astrobiology and the search for evidence of life beyond Earth are now key drivers for planetary science and astronomy missions. Efforts are underway to establish evaluative frameworks to interpret potential signs of life in returned data. However, there is a need for a "before-the-fact" system to assess mission science risk and the potential false negative and false positive results. The Life Detection Knowledge Base (LDKB) is a community-owned web tool that organizes the scientific literature and enables discourse and evaluation of potential biosignatures (defined to the same level of granularity) relative to a set of standard criteria. This article details the development of draft criteria and their utilization as an organizing basis for the LDKB and their vetting by the astrobiology community via two workshops. We report the incorporation of community feedback to generate a finalized set of criteria, which delineate contributing factors to the potential for false negative or false positive results in the search for evidence of life within and beyond our solar system.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming