琼脂糖基氧电催化剂与凝胶电解质双向协同优化制备高效柔性锌空气电池

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zongyan Li, Chenglong Qiu, Huasheng Zhang, Weike Zhang, Chunliu Zhu, Wenhao Lan, Zhaowei Ji, Yafei Zhang, Weiqian Tian, Jingwei Chen, Minghua Huang, Huanlei Wang
{"title":"琼脂糖基氧电催化剂与凝胶电解质双向协同优化制备高效柔性锌空气电池","authors":"Zongyan Li, Chenglong Qiu, Huasheng Zhang, Weike Zhang, Chunliu Zhu, Wenhao Lan, Zhaowei Ji, Yafei Zhang, Weiqian Tian, Jingwei Chen, Minghua Huang, Huanlei Wang","doi":"10.1002/smtd.202500877","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible Zn-air batteries (F-ZABs) typically suffer from limited cycle life due to sluggish oxygen electrocatalytic kinetics and unstable electrochemical interfaces. A bidirectionally synergistic strategy for profit is proposed from the unique elemental characteristics and molecular architecture of agarose to simultaneously construct a triple-doped N, P, O oxygen electrocatalyst with multiple active sites and gel electrolyte with exceptional mechanical robustness and weather resistance. The electrocatalyst demonstrates superior oxygen reduction reaction (ORR) activity (E<sub>1/2</sub> = 0.85 V) and stability (<5 mV decay after 10,000 cycles), outperforming commercial Pt/C. Density functional theory (DFT) calculations reveal that N, O, and P species enhance O-intermediate adsorption through optimized p-band center proximity to the Fermi level. This synergy enables aqueous Zn-air (ZABs) to achieve superior cyclability of 950 h. The dual helical structure of agarose synergizes with ethylene glycol (EG) to reconstruct hydrogen─bond networks of the polyacrylamide (PAM). This design yields F-ZABs with outstanding power density (144 mW cm<sup>-2</sup>), operational stability (205 h), tolerance to mechanical stress and extreme temperatures (-20 °C for 420 h; 60 °C for 40 h). The work provides new insights into multidimensional marine biomass utilization, highlighting the critical role of intrinsic oxygen functionalities in ORR enhancement and the pivotal impact of electrolyte mechanics on flexible battery longevity.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500877"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency Flexible Zn-Air Batteries Enabled by Agarose Based Oxygen Electrocatalyst and Gel Electrolyte Through Bidirectionally Synergistic Optimization Strategy.\",\"authors\":\"Zongyan Li, Chenglong Qiu, Huasheng Zhang, Weike Zhang, Chunliu Zhu, Wenhao Lan, Zhaowei Ji, Yafei Zhang, Weiqian Tian, Jingwei Chen, Minghua Huang, Huanlei Wang\",\"doi\":\"10.1002/smtd.202500877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flexible Zn-air batteries (F-ZABs) typically suffer from limited cycle life due to sluggish oxygen electrocatalytic kinetics and unstable electrochemical interfaces. A bidirectionally synergistic strategy for profit is proposed from the unique elemental characteristics and molecular architecture of agarose to simultaneously construct a triple-doped N, P, O oxygen electrocatalyst with multiple active sites and gel electrolyte with exceptional mechanical robustness and weather resistance. The electrocatalyst demonstrates superior oxygen reduction reaction (ORR) activity (E<sub>1/2</sub> = 0.85 V) and stability (<5 mV decay after 10,000 cycles), outperforming commercial Pt/C. Density functional theory (DFT) calculations reveal that N, O, and P species enhance O-intermediate adsorption through optimized p-band center proximity to the Fermi level. This synergy enables aqueous Zn-air (ZABs) to achieve superior cyclability of 950 h. The dual helical structure of agarose synergizes with ethylene glycol (EG) to reconstruct hydrogen─bond networks of the polyacrylamide (PAM). This design yields F-ZABs with outstanding power density (144 mW cm<sup>-2</sup>), operational stability (205 h), tolerance to mechanical stress and extreme temperatures (-20 °C for 420 h; 60 °C for 40 h). The work provides new insights into multidimensional marine biomass utilization, highlighting the critical role of intrinsic oxygen functionalities in ORR enhancement and the pivotal impact of electrolyte mechanics on flexible battery longevity.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500877\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500877\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500877","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于氧电催化动力学缓慢和电化学界面不稳定,柔性锌空气电池(F-ZABs)的循环寿命有限。从琼脂糖独特的元素特征和分子结构出发,提出了一种双向协同的盈利策略,同时构建具有多个活性位点的三掺杂N, P, O氧电催化剂和具有优异机械稳健性和耐温性的凝胶电解质。该电催化剂表现出优异的氧还原反应(ORR)活性(E1/2 = 0.85 V)、稳定性(-2)、操作稳定性(205 h)、耐机械应力和极端温度(-20°C 420 h);60°C, 40小时)。这项工作为多维海洋生物质利用提供了新的见解,强调了内在氧功能在ORR增强中的关键作用,以及电解质力学对柔性电池寿命的关键影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Efficiency Flexible Zn-Air Batteries Enabled by Agarose Based Oxygen Electrocatalyst and Gel Electrolyte Through Bidirectionally Synergistic Optimization Strategy.

Flexible Zn-air batteries (F-ZABs) typically suffer from limited cycle life due to sluggish oxygen electrocatalytic kinetics and unstable electrochemical interfaces. A bidirectionally synergistic strategy for profit is proposed from the unique elemental characteristics and molecular architecture of agarose to simultaneously construct a triple-doped N, P, O oxygen electrocatalyst with multiple active sites and gel electrolyte with exceptional mechanical robustness and weather resistance. The electrocatalyst demonstrates superior oxygen reduction reaction (ORR) activity (E1/2 = 0.85 V) and stability (<5 mV decay after 10,000 cycles), outperforming commercial Pt/C. Density functional theory (DFT) calculations reveal that N, O, and P species enhance O-intermediate adsorption through optimized p-band center proximity to the Fermi level. This synergy enables aqueous Zn-air (ZABs) to achieve superior cyclability of 950 h. The dual helical structure of agarose synergizes with ethylene glycol (EG) to reconstruct hydrogen─bond networks of the polyacrylamide (PAM). This design yields F-ZABs with outstanding power density (144 mW cm-2), operational stability (205 h), tolerance to mechanical stress and extreme temperatures (-20 °C for 420 h; 60 °C for 40 h). The work provides new insights into multidimensional marine biomass utilization, highlighting the critical role of intrinsic oxygen functionalities in ORR enhancement and the pivotal impact of electrolyte mechanics on flexible battery longevity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信