离子导电聚磷酸硅氧烷网络:构建坚固的固体电解质界面为SiOx阳极。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-07-09 DOI:10.1002/cssc.202501148
Xinyu Zhou, Xueyang Li, Xinlong Chen, Can Zhang, Jiae Wu, Jiarui Li, Chao Wang
{"title":"离子导电聚磷酸硅氧烷网络:构建坚固的固体电解质界面为SiOx阳极。","authors":"Xinyu Zhou, Xueyang Li, Xinlong Chen, Can Zhang, Jiae Wu, Jiarui Li, Chao Wang","doi":"10.1002/cssc.202501148","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon (Si) is famous for its high theoretical specific capacity, natural abundance and low reduction potential. However, enormous volume change, fast capacity decay and poor ionic conductivity hamper the practical utilization of Si-based anodes. Until now, strategies to improve cycling performance by tailoring solid electrolyte interphase (SEI) remain to be less effective, especially in high-Si content anodes. In this work, the ion-conductive polyphosphasiloxane (PPS) network is constructed on the SiOx anode via condensation of tetraethyl orthosilicate/tris(trimethylsilyl)phosphate (TEOS/TMSP) electrolyte additive to form a robust SEI. The PPS network with Si‒O‒P bonds exhibits a low Li+ transport barrier, high ionic conductivity and decreased activation energy (Ea), enabling the regular (de)lithiation process. Moreover, the robust SEI mitigates the volume change of SiOx anode due to the reinforcement effect from crosslinked PPS skeleton with strong Si‒O‒P linkages. As a result, SiOx anode with TEOS/TMSP electrolyte additives exhibits superior cycling performance over 700 cycles with a high retention of 73.4% at 0.4 C and an average capacity decay rate of 0.038% per cycle in half cell. This work provides new insights into dual-additive electrolyte development and SEI design.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501148"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion-Conductive Polyphosphasiloxane Networks: Constructing Robust Solid Electrolyte Interphase for SiOx Anode.\",\"authors\":\"Xinyu Zhou, Xueyang Li, Xinlong Chen, Can Zhang, Jiae Wu, Jiarui Li, Chao Wang\",\"doi\":\"10.1002/cssc.202501148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silicon (Si) is famous for its high theoretical specific capacity, natural abundance and low reduction potential. However, enormous volume change, fast capacity decay and poor ionic conductivity hamper the practical utilization of Si-based anodes. Until now, strategies to improve cycling performance by tailoring solid electrolyte interphase (SEI) remain to be less effective, especially in high-Si content anodes. In this work, the ion-conductive polyphosphasiloxane (PPS) network is constructed on the SiOx anode via condensation of tetraethyl orthosilicate/tris(trimethylsilyl)phosphate (TEOS/TMSP) electrolyte additive to form a robust SEI. The PPS network with Si‒O‒P bonds exhibits a low Li+ transport barrier, high ionic conductivity and decreased activation energy (Ea), enabling the regular (de)lithiation process. Moreover, the robust SEI mitigates the volume change of SiOx anode due to the reinforcement effect from crosslinked PPS skeleton with strong Si‒O‒P linkages. As a result, SiOx anode with TEOS/TMSP electrolyte additives exhibits superior cycling performance over 700 cycles with a high retention of 73.4% at 0.4 C and an average capacity decay rate of 0.038% per cycle in half cell. This work provides new insights into dual-additive electrolyte development and SEI design.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501148\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501148\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501148","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅(Si)以其高理论比容量、天然丰度和低还原电位而闻名。然而,体积变化大、容量衰减快、离子电导率差等问题阻碍了硅基阳极的实际应用。到目前为止,通过调整固体电解质界面(SEI)来提高循环性能的策略仍然不太有效,特别是在高硅含量的阳极中。在这项工作中,通过正硅酸四乙酯/三甲基硅氧烷磷酸(TEOS/TMSP)电解质添加剂的缩合,在SiOx阳极上构建了离子导电聚磷硅氧烷(PPS)网络,形成了坚固的SEI。具有Si-O-P键的PPS网络具有较低的Li+输运势垒、较高的离子电导率和较低的活化能(Ea),实现了规则的(去)锂化过程。此外,由于具有强Si-O-P键的交联PPS骨架的增强作用,坚固的SEI减轻了SiOx阳极的体积变化。结果表明,添加TEOS/TMSP电解质的SiOx阳极在700次循环中表现出优异的循环性能,在0.4℃下保持73.4%的高保留率,半电池中每循环平均容量衰减率为0.038%。这项工作为双添加剂电解质的开发和SEI设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ion-Conductive Polyphosphasiloxane Networks: Constructing Robust Solid Electrolyte Interphase for SiOx Anode.

Silicon (Si) is famous for its high theoretical specific capacity, natural abundance and low reduction potential. However, enormous volume change, fast capacity decay and poor ionic conductivity hamper the practical utilization of Si-based anodes. Until now, strategies to improve cycling performance by tailoring solid electrolyte interphase (SEI) remain to be less effective, especially in high-Si content anodes. In this work, the ion-conductive polyphosphasiloxane (PPS) network is constructed on the SiOx anode via condensation of tetraethyl orthosilicate/tris(trimethylsilyl)phosphate (TEOS/TMSP) electrolyte additive to form a robust SEI. The PPS network with Si‒O‒P bonds exhibits a low Li+ transport barrier, high ionic conductivity and decreased activation energy (Ea), enabling the regular (de)lithiation process. Moreover, the robust SEI mitigates the volume change of SiOx anode due to the reinforcement effect from crosslinked PPS skeleton with strong Si‒O‒P linkages. As a result, SiOx anode with TEOS/TMSP electrolyte additives exhibits superior cycling performance over 700 cycles with a high retention of 73.4% at 0.4 C and an average capacity decay rate of 0.038% per cycle in half cell. This work provides new insights into dual-additive electrolyte development and SEI design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信