合成氧化还原反应纳米复合物促进空间控制mRNA释放和肿瘤选择性表达。

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Sheng Lin, Xia Cheng, Xiyi Chen, Jinxuan He, Wenxiu An, Qiufang Bai, Qixian Chen, Lie Ma, Jianhua Hu, Yue Wang, Xiabin Lan
{"title":"合成氧化还原反应纳米复合物促进空间控制mRNA释放和肿瘤选择性表达。","authors":"Sheng Lin, Xia Cheng, Xiyi Chen, Jinxuan He, Wenxiu An, Qiufang Bai, Qixian Chen, Lie Ma, Jianhua Hu, Yue Wang, Xiabin Lan","doi":"10.1021/acs.bioconjchem.5c00264","DOIUrl":null,"url":null,"abstract":"<p><p>The refinement of dynamic molecular mechanisms regulating mRNA release kinetics represents a critical frontier in advancing the synthetic mRNA delivery systems. This study details the synthesis of an intriguing ROS-responsive cationic block copolymer (pM-pBD) via reversible addition-fragmentation chain transfer (RAFT) polymerization, employing biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) and charge-reversible (2-acryloyl)ethyl(boronic acid benzyl)diethylammonium bromide (BD) as monomeric precursors. The synthesized copolymer facilitates electrostatic-driven self-assembly with anionic mRNA. Mechanistically, the pBD block exhibits ROS-mediated charge transition, enabling stimulus-dependent molecular decomposition and promoting mRNA payload liberation, thereby establishing spatial regulation of translational activity. Furthermore, intracellular ROS modulation experiments revealed that systemic ascorbic acid administration selectively enriches reactive oxygen species within tumor microenvironments. This redox microenvironment significantly amplifies pM-pBD nanocomplex-mediated mRNA expression by an order of magnitude across multiple carcinogenic cell lines, validating the ROS-responsive characteristics of our rationally designed delivery platform. In vivo studies demonstrated the highest mRNA expression levels in tumors when aided by ascorbic acid adjuvants, despite lower tumor accumulation of mRNA compared to renal and hepatic sequestration post intravenous administration of the pM-pBD nanocomplex. This spatial expression pattern correlates with ascorbic acid-mediated intratumoral ROS accumulation, which promotes cargo release and subsequent protein synthesis of approximately 6.4-fold enhancement. Our approach, integrating redox-responsive polymer design with organ-specific pharmacological modulation, signifies a transformative advancement in targeted nucleic acid delivery. By merging stimulus-responsive materials science with tumor microenvironment biology, this methodology provides a foundation for spatially controlled mRNA expression, presenting an innovative strategy for precision oncology applications.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Redox-Responsive Nanocomplexes Facilitate Spatially Controlled mRNA Release and Tumor-Selective Expression.\",\"authors\":\"Sheng Lin, Xia Cheng, Xiyi Chen, Jinxuan He, Wenxiu An, Qiufang Bai, Qixian Chen, Lie Ma, Jianhua Hu, Yue Wang, Xiabin Lan\",\"doi\":\"10.1021/acs.bioconjchem.5c00264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The refinement of dynamic molecular mechanisms regulating mRNA release kinetics represents a critical frontier in advancing the synthetic mRNA delivery systems. This study details the synthesis of an intriguing ROS-responsive cationic block copolymer (pM-pBD) via reversible addition-fragmentation chain transfer (RAFT) polymerization, employing biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) and charge-reversible (2-acryloyl)ethyl(boronic acid benzyl)diethylammonium bromide (BD) as monomeric precursors. The synthesized copolymer facilitates electrostatic-driven self-assembly with anionic mRNA. Mechanistically, the pBD block exhibits ROS-mediated charge transition, enabling stimulus-dependent molecular decomposition and promoting mRNA payload liberation, thereby establishing spatial regulation of translational activity. Furthermore, intracellular ROS modulation experiments revealed that systemic ascorbic acid administration selectively enriches reactive oxygen species within tumor microenvironments. This redox microenvironment significantly amplifies pM-pBD nanocomplex-mediated mRNA expression by an order of magnitude across multiple carcinogenic cell lines, validating the ROS-responsive characteristics of our rationally designed delivery platform. In vivo studies demonstrated the highest mRNA expression levels in tumors when aided by ascorbic acid adjuvants, despite lower tumor accumulation of mRNA compared to renal and hepatic sequestration post intravenous administration of the pM-pBD nanocomplex. This spatial expression pattern correlates with ascorbic acid-mediated intratumoral ROS accumulation, which promotes cargo release and subsequent protein synthesis of approximately 6.4-fold enhancement. Our approach, integrating redox-responsive polymer design with organ-specific pharmacological modulation, signifies a transformative advancement in targeted nucleic acid delivery. By merging stimulus-responsive materials science with tumor microenvironment biology, this methodology provides a foundation for spatially controlled mRNA expression, presenting an innovative strategy for precision oncology applications.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.5c00264\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00264","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

调控mRNA释放动力学的动态分子机制的细化是推进合成mRNA传递系统的关键前沿。本研究以生物相容性的2-甲基丙烯酰氧乙基磷酸胆碱(MPC)和电荷可逆的(2-丙烯酰)乙基(硼酸苄基)二乙基溴化铵(BD)为单体前体,通过可逆加成-裂解链转移(RAFT)聚合合成了一种具有ros响应性的阳离子嵌段共聚物(pM-pBD)。合成的共聚物有利于与阴离子mRNA的静电驱动自组装。在机制上,pBD片段表现出ros介导的电荷转变,使刺激依赖的分子分解和促进mRNA有效载荷的释放,从而建立翻译活性的空间调控。此外,细胞内ROS调节实验显示,全身给药抗坏血酸选择性地丰富肿瘤微环境中的活性氧。这种氧化还原微环境在多个致癌细胞系中显著放大了pM-pBD纳米复合物介导的mRNA表达,验证了我们合理设计的递送平台的ros响应特性。体内研究表明,在抗坏血酸佐剂的辅助下,肿瘤中mRNA的表达水平最高,尽管与静脉注射pM-pBD纳米复合物后肾脏和肝脏的分离相比,肿瘤中mRNA的积累较低。这种空间表达模式与抗坏血酸介导的肿瘤内ROS积累相关,ROS积累促进了货物释放和随后的蛋白质合成,增强了约6.4倍。我们的方法,将氧化还原反应性聚合物设计与器官特异性药理调节相结合,标志着靶向核酸递送的变革性进步。通过将刺激响应材料科学与肿瘤微环境生物学相结合,该方法为空间控制mRNA表达提供了基础,为精确肿瘤学应用提供了创新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Redox-Responsive Nanocomplexes Facilitate Spatially Controlled mRNA Release and Tumor-Selective Expression.

The refinement of dynamic molecular mechanisms regulating mRNA release kinetics represents a critical frontier in advancing the synthetic mRNA delivery systems. This study details the synthesis of an intriguing ROS-responsive cationic block copolymer (pM-pBD) via reversible addition-fragmentation chain transfer (RAFT) polymerization, employing biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) and charge-reversible (2-acryloyl)ethyl(boronic acid benzyl)diethylammonium bromide (BD) as monomeric precursors. The synthesized copolymer facilitates electrostatic-driven self-assembly with anionic mRNA. Mechanistically, the pBD block exhibits ROS-mediated charge transition, enabling stimulus-dependent molecular decomposition and promoting mRNA payload liberation, thereby establishing spatial regulation of translational activity. Furthermore, intracellular ROS modulation experiments revealed that systemic ascorbic acid administration selectively enriches reactive oxygen species within tumor microenvironments. This redox microenvironment significantly amplifies pM-pBD nanocomplex-mediated mRNA expression by an order of magnitude across multiple carcinogenic cell lines, validating the ROS-responsive characteristics of our rationally designed delivery platform. In vivo studies demonstrated the highest mRNA expression levels in tumors when aided by ascorbic acid adjuvants, despite lower tumor accumulation of mRNA compared to renal and hepatic sequestration post intravenous administration of the pM-pBD nanocomplex. This spatial expression pattern correlates with ascorbic acid-mediated intratumoral ROS accumulation, which promotes cargo release and subsequent protein synthesis of approximately 6.4-fold enhancement. Our approach, integrating redox-responsive polymer design with organ-specific pharmacological modulation, signifies a transformative advancement in targeted nucleic acid delivery. By merging stimulus-responsive materials science with tumor microenvironment biology, this methodology provides a foundation for spatially controlled mRNA expression, presenting an innovative strategy for precision oncology applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信