可点击和可降解的聚碳酸酯载体mRNA递送。

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Christopher J LaSalle, David V Morrissey, Theresa M Reineke
{"title":"可点击和可降解的聚碳酸酯载体mRNA递送。","authors":"Christopher J LaSalle, David V Morrissey, Theresa M Reineke","doi":"10.1021/acs.bioconjchem.5c00073","DOIUrl":null,"url":null,"abstract":"<p><p>The development of nucleic acid therapies has enabled access to treatments for several diseases previously thought untreatable, yet effective and safe delivery remains a hurdle. The benefit of synthetic vehicles lies in their modularity in optimizing performance and safety. Herein, we present a novel biodegradable polycarbonate alternative to the nondegradable synthetic and viral vectors often utilized in commercial gene therapies. This PC system leverages ring-opening polymerization of a cyclic carbonate to produce polymers (∼20 kDa) with pendant allyl groups compatible with thiol-ene click post-polymerization modification. The derivatization of the parent polymer enables a direct comparison of the pendant groups without molecular weight and dispersity variables. These pendants include 2-(dimethylamino)ethanethiol hydrochloride (DMA) as the cation and one of three hydrophilic modifiers: mercaptopropanol (OH), thioglycolic acid (COOH), and methoxy polyethylene glycol thiol (PEG), which modulate cellular membrane interaction, charge density, and sheathing properties. This family of vehicles forms stable polymer-mRNA complexes (polyplexes), confirmed via dynamic light scattering and gel electrophoresis. <i>In vitro</i> screening assays showed minimal cytotoxic effects with HEK293T (human embryonic kidney) and A549 (human lung cancer) cells, resulting in a statistically significant viability improvement over the polymer control, JetPEI. Coupling the viability with expression values of EGFP-encoded (enhanced green fluorescent protein) mRNA, <i>in vitro</i> delivery efficiency shows the polycarbonate performance on par with JetPEI in nearly all cases while offering degradation via hydrolysis. Overall, this modular polycarbonate scaffold improves cell viability and maintains performance similar to that of positive controls while featuring modularity and degradability.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clickable and Degradable Polycarbonate Vehicles for mRNA Delivery.\",\"authors\":\"Christopher J LaSalle, David V Morrissey, Theresa M Reineke\",\"doi\":\"10.1021/acs.bioconjchem.5c00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of nucleic acid therapies has enabled access to treatments for several diseases previously thought untreatable, yet effective and safe delivery remains a hurdle. The benefit of synthetic vehicles lies in their modularity in optimizing performance and safety. Herein, we present a novel biodegradable polycarbonate alternative to the nondegradable synthetic and viral vectors often utilized in commercial gene therapies. This PC system leverages ring-opening polymerization of a cyclic carbonate to produce polymers (∼20 kDa) with pendant allyl groups compatible with thiol-ene click post-polymerization modification. The derivatization of the parent polymer enables a direct comparison of the pendant groups without molecular weight and dispersity variables. These pendants include 2-(dimethylamino)ethanethiol hydrochloride (DMA) as the cation and one of three hydrophilic modifiers: mercaptopropanol (OH), thioglycolic acid (COOH), and methoxy polyethylene glycol thiol (PEG), which modulate cellular membrane interaction, charge density, and sheathing properties. This family of vehicles forms stable polymer-mRNA complexes (polyplexes), confirmed via dynamic light scattering and gel electrophoresis. <i>In vitro</i> screening assays showed minimal cytotoxic effects with HEK293T (human embryonic kidney) and A549 (human lung cancer) cells, resulting in a statistically significant viability improvement over the polymer control, JetPEI. Coupling the viability with expression values of EGFP-encoded (enhanced green fluorescent protein) mRNA, <i>in vitro</i> delivery efficiency shows the polycarbonate performance on par with JetPEI in nearly all cases while offering degradation via hydrolysis. Overall, this modular polycarbonate scaffold improves cell viability and maintains performance similar to that of positive controls while featuring modularity and degradability.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.5c00073\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00073","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

核酸疗法的发展使人们能够获得以前认为无法治疗的几种疾病的治疗方法,但有效和安全的递送仍然是一个障碍。合成车辆的优势在于其模块化的优化性能和安全性。在此,我们提出了一种新的可生物降解的聚碳酸酯替代不可降解的合成载体和病毒载体,通常用于商业基因治疗。该PC系统利用环碳酸酯的开环聚合生产具有悬垂烯丙基的聚合物(~ 20 kDa),与巯基点击聚合后改性相容。母聚合物的衍生化使得在没有分子量和分散性变量的情况下可以直接比较垂坠基团。这些悬垂物包括2-(二甲氨基)乙硫醇盐化物(DMA)作为阳离子和三种亲水性改性剂之一:巯基丙醇(OH),巯基乙酸(COOH)和甲氧基聚乙二醇硫醇(PEG),它们调节细胞膜相互作用,电荷密度和护套性能。该载体家族形成稳定的聚合物- mrna复合物(多聚物),通过动态光散射和凝胶电泳证实。体外筛选实验显示HEK293T(人胚胎肾)和A549(人肺癌)细胞的细胞毒性作用很小,与聚合物对照JetPEI相比,具有统计学上显著的活力提高。结合egfp编码(增强型绿色荧光蛋白)mRNA的表达值,体外递送效率显示聚碳酸酯在几乎所有情况下的性能与JetPEI相当,同时通过水解进行降解。总体而言,这种模块化聚碳酸酯支架提高了细胞活力,并保持了与阳性对照相似的性能,同时具有模块化和可降解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clickable and Degradable Polycarbonate Vehicles for mRNA Delivery.

The development of nucleic acid therapies has enabled access to treatments for several diseases previously thought untreatable, yet effective and safe delivery remains a hurdle. The benefit of synthetic vehicles lies in their modularity in optimizing performance and safety. Herein, we present a novel biodegradable polycarbonate alternative to the nondegradable synthetic and viral vectors often utilized in commercial gene therapies. This PC system leverages ring-opening polymerization of a cyclic carbonate to produce polymers (∼20 kDa) with pendant allyl groups compatible with thiol-ene click post-polymerization modification. The derivatization of the parent polymer enables a direct comparison of the pendant groups without molecular weight and dispersity variables. These pendants include 2-(dimethylamino)ethanethiol hydrochloride (DMA) as the cation and one of three hydrophilic modifiers: mercaptopropanol (OH), thioglycolic acid (COOH), and methoxy polyethylene glycol thiol (PEG), which modulate cellular membrane interaction, charge density, and sheathing properties. This family of vehicles forms stable polymer-mRNA complexes (polyplexes), confirmed via dynamic light scattering and gel electrophoresis. In vitro screening assays showed minimal cytotoxic effects with HEK293T (human embryonic kidney) and A549 (human lung cancer) cells, resulting in a statistically significant viability improvement over the polymer control, JetPEI. Coupling the viability with expression values of EGFP-encoded (enhanced green fluorescent protein) mRNA, in vitro delivery efficiency shows the polycarbonate performance on par with JetPEI in nearly all cases while offering degradation via hydrolysis. Overall, this modular polycarbonate scaffold improves cell viability and maintains performance similar to that of positive controls while featuring modularity and degradability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信